

Calculation Booklet

Engineering Express Project 22-52551, Shane McArthur

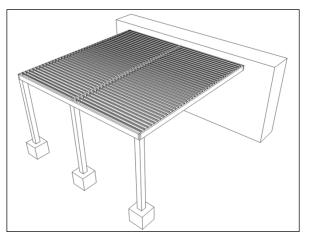
Scope of Work:

Project Information

Project Address:

Structural Design & Installation Of 1 Residential, Host Attached Pergola. Includes Calculaiton Of Loading, Members, Connections, Foundations, And Connection To Existing Host Structures As Required.

22-52551 Shane McArthur 8609 SE 78th St Mercer Island, WA 98040


Design of: At Grade, Residential, Host Attached Pergola With Mechanically Operated Louvered Roof

Prepared For:

StruXure Outdoor of Washington 9116 E Sprague Ave #547 Spokane, WA 99206 509-928-0880

General Notes:

This calculation package is to be submitted for permit alongside a set of certified drawings and details which bears the same project name, number, address, and certifying Professional Engineer as shown in the certification below. Any project notes, details, or design information in that drawing set shall also apply to this report (in the case of any uncertainty, the more stringent information shall apply). This structure shall be built in conformance with any building codes referenced on that drawing set, as well as any local building codes required for the project address. This document shall not be used or reproduced without the original signature & raised seal of the certifying P.E. Alterations, additions or other markings to this document are not permitted and invalidate our certification. Photocopies and unsealed documents are not to be accepted. Except as expressly provided herein, no additional cetifications or affirmations are intedned.

Project Designer: MD Project Reviewer: RS Sealing Engineer: Frank Bennardo PE Engineer's Seal Below Valid For Pages 1 Through 46

For Additional Information, Scan the QR Code here:

Frank Bennardo PE PE# 56089 CA# 4018

Work Prepared For:StruXure Outdoor of WashingtonProject:22-52551 - Shane McArthurDesign Overview Of:Project Overview

Structure Layout

20.00 ft
20.00 ft
11.00 ft
Host Attached
Louvers
0.0 / 12

Design Criteria (Detailed Calculations On Following Pages)

Loading Inputs

Dead Load 5.0 psf Design Live Load 16.0 psf

Risk Category	II
Ultimate Wind Speed	110 mph
Exposure Category	D
HVHZ	NON-HVHZ
Wind Flow	Clear
Ground Snow Load	30.0 psf

Unredicible Snow Load?	FALSE
Design Snow Load	33.9 psf
Nominal Ice Thickness	1.00 in
Sajamia Sita Class	

Seismic Site Class	D (DEFAULT)
Response Acceleration, Ss	1.5 s
Response Acceleration, S ₁	0.5 s
Seismic Site Category	D
TL	6 s
Total Effective Seismic Design	
Force, Fp	1871.4 lbs

ASD Design Load Combinations

Per ASCE 7-16, Ch 2.4

Components & Cladding

Gravity	38.9 psf	D + S
Uplift	-10.0 psf	Min Requirement
Lateral	15.9 psf	D + 0.6 W

Main Wind Force

Gravity	38.9 psf	D + S
Uplift	-13.5 psf	0.6 D + 0.6 W
Lateral	15.9 psf	D + 0.6 W

Work Prepared For:StruXure Outdoor of WashingtonProject:22-52551 - Shane McArthurDesign Overview Of:Roof And Beam Design Overview

Roof Design - Louvers

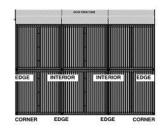
Max Louver Span	10.00 ft
Aluminum Alloy:	6063-T6
Louver Width	5.087 in
Louver Height	5.006 in
Louver Spacing	8 in

Strength Capacity % = 32% Deflection Capacity = 44%

Louvers To Be Rotated To Open Position During Named Wind Event (75 MPH+)

Structural Beam Designs - (Critical Members Shown)

Main Beam #1 D (⊥ Roof Member	•	Main Beam # (-
Beam #1 Material	6063-T6	Beam #2 Material	• •
Beam #1 Max Span	19.50 ft	Beam #2 Max Span	10.00 ft
Beam #1 Overhang L	0.00 ft	Beam #2 Overhang L	0.00 ft
Beam #1 Overhang R	0.00 ft	Beam #2 Overhang R	0.00 ft
Beam Width	2.0 in	Beam Width	2.0 in
Beam Height	8.0 in	Beam Height	8.0 in
Beam Thickness	0.250 in	Beam Thickness	0.250 in
# Beams in Section	1	# Beams in Section	1
Beam #1 Sx	8.150 in³	Beam #2 Sx	8.150 in³
Beam Location	Edge	1st Intermediate Beam #1 Offset "a"	0.00 ft
Beam #1 - # Spans	1	2nd Intermediate Beam #1 Offset "b"	0.00 ft
		Beam Location	Edge
		Beam #2 - # Spans	2
Strength Capacity % =	100%	Strength Capacity % =	6%
Deflection Capacity =	73%	Deflection Capacity =	0%


Work Prepared For:StruXure Outdoor of WashingtonProject:22-52551 - Shane McArthurDesign Overview Of:Post & Connection Design

Post Design (Critical Post Shown)

Post Material	6063-T6
Post Location	Edge
Post Height	11.00 ft
Post Width	8.0 in
Post Depth	8.0 in
Post Thickness	0.188 in
Post #1 Sx	14.910 in³
Fascia Height	8.0 in
-	
Tributer (\A/idth	0.75.44

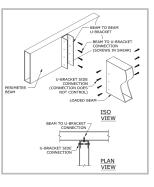
Tributary Width	9.75 ft
Tributary Length	10.00 ft

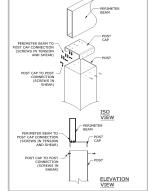
Strength Capacity % = 32% Deflection Capacity = 12%

Reactions On Foundation

Gravity / Compression =	3.79 Kip
Uplift / Tension =	-1.32 Kip
Lateral / Shear =	0.54 Kip
Bending / Moment =	4.1 Kip-ft

Connection Design


Loaded Beam To Perimeter Beam


Total # Screws6Screw Type !-14 SMS, 316 SSTensile Strength2985 lbShear Strength2235 lbConnection Interaction =94%

Perimeter Beam to Post

Connection Orientation Beam On Top Of Post # Screws - Beam To Clip 6 # Screws - Clip To Post 6 Screw Type #12-14 SMS, 316 SS

<u>Beam To Post Clip</u>	
Tensile Strength	2985 lb
Shear Strength	2235 lb
Connection Interaction =	68%

Post Clip To Post		
Tensile Strength	2985 lb	
Shear Strength	2235 lb	
onnection Interaction =	59%	

С

Work Prepared For: StruXure Outdoor of Washington 22-52551 - Shane McArthur Project: Design Overview Of: Foundation and Anchorage Design

Concrete Foundation Design & Reactions

Footing Type	Isolated Footing
4" Slab Over Footing?	FALSE
Footing Lendth	36.0 in
Footing Width	36.0 in
Footing Depth	30.0 in
Footing Name	36" x 36" x 30" Isolated Footing

Required Reinforcement (4) #5, Each Way, Top & Bottom

Footing Design Capacities

Uplift Capcity % =	39%
Sliding Capacity % =	45%
Overturning Capacity (X) % =	96%
Overturning Capacity (Y) % =	69%
Bearing Pressure Capacity =	50%

Baseplate Design

Post Attachment	Bolted Baseplate
Baseplate Length	12.0 in
Baseplate Width	12.0 in
Baseplate Thickness	0.250 in

Anchorage To Concrete -

3/8" Dia, Has Threaded Rods With Hy-200 Epoxy @ 4.5" Embed Anchor Diameter 0.375 in Anchor Embedment 4.50 in Design Tension Strength 7,431 lbs Design Shear Strength 22.954 lbs Strength Capacity % = 84%

Work Prepared For:	StruXure Outdoor of Washington
Project:	22-52551 - Shane McArthur
Calculations For:	Design Loading from Structure Classificaition & Wind

Loading Design Criteria:

Design Standard: Risk Category:	ASCE 7-16 II	
Overall Width or Projection X, W = Overall Length Y, L = Total Area, A = Installaton Elevation = Structure Height = Mean Roof height, h = Roof Slope, O = Structure Type =	20.00 ft 20.00 ft 400.0 ft ² 0.00 ft 11.00 ft 11.00 ft 0.00 ° Host Attac	(0" Per 12" of Slope) hed

Dead and Live Loading:

Design Dead Load:	5.0 psf	
Design Roof Live Load:	20.00 psf	
(Not-Occupiable Ordinary Fla	at, Pitched,	and Curved Roofs)
Live Load Reduction For Ordinary Roofs, Awr	nings, And	Canopies (Per IBC 1607.13.2.1)
$L_{reduced} = L_{design} * R_1 * R_2$		
Reduction for Large Area, R_1 =	0.80	
Reduction for Large Slope, R_2 =	1.00	
Reduced Roof Live Load, L_R =	16.00 psf	
Wind Design Conditions:		

Ultimate Wind Velocity, Vult =	110 mph	(3-Second Gu	st)	
Exposure Category:	D			
Wind Flow Through Structure:	Clear			
Roof Wind Porosity:	50%	(0% = Solid)	Roof Type:	Louvers
Wall Wind Porosity:	100%	(0 % – 3010)	Wall Type:	Open Walls
Directionality Factor, Kd =	0.85			
Gust Effect Factor, G =	0.85			
Velocity Pressure Coefficient, Kz =	0.98			
Topographic Factor, Kzt =	1			
Velocity Pressure, q _z =	25.70 psf			

Work Prepared For: StruXure Outdoor of Wash Project: 22-52551 - Shane McArthu		
Calculations For: Design Loading from Str		ssificaition & Wind
Gravity & Uplift Loads on Components & Clad	dding for St	tructure Support, Open Structures
(Per ASCE 7-16 Chapter 30.11)		
Note: Loading Not Applicable For Components A	And Cladding	g On Enclosed Structures
Effective Component Length, $L_1 =$	10.00 ft	Roof Component Considered: Louver Blade
Effective Component Width, $W_1 =$	0.42 ft	Least Horizontal
Effective Wind Area, A_e =	4.24 ft^2	Dimension, $a = 3.00$ ft
Host Structure Eave Height, he =	26.00 ft	
		A ≤ a^2
Positive Pressure Coefficient, CN _p =	0.6	
Negative Pressure Coefficient, CN _n =	-0.5	
Velocity Pressure With Roof Porosity, q_z =	12.85 psf	
C&C Gravity Wind Load, WL_p =	6.55 psf	= qz * G * CNp
C&C Uplift Wind Load, WL _n =	-5.24 psf	= qz * G * CNn
Gravity & Uplift Loads On Monoslope, Free R	oof Main W	ind Force Resisting System:
(Per ASCE 7-16 Chapter 27.3-4 & 27.3-7 - MWF	RS Direction	nal Methodology)
Wind Direction, $\gamma = 0^{\circ}$		Wind Direction, $\gamma = 180^{\circ}$
Windward Coefficient, Load Case A, C _{NWa} =	1.2	CNWa = 1.2
Windward Coefficient, Load Case B, C _{NWb} =	-1.1	CNWb = -1.1
Leeward Coefficient, Load Case A, C_{NLa} =	0.3	CNLa = 0.3
Leeward Coefficient, Load Case B, C _{NLb} =	-0.1	CNLb = -0.1

Leeward Coefficient, Load Case B, C_{NLb} =	-0.1	CNLb =	-0.1
Wind Direction, $y = 90^{\circ}$ (Critica	Nalues at Windward Fasci	2)	

Windward Coefficient, Load Case A, C _N	a = -0.8	Load Case B, C _{Nb} =	8.0
· · · · · ·	u	, 110	

<u>Gravity & Uplift Loads On Monoslope, Host Attached Main Wind Force Resisting System:</u> (Per ASCE 7-16 Chapter 30.11- MWFRS Methodology)

Effective Wind Area, A _{EF} = + Coefficient, GC _{pn+} =	400 ft ² 0.6	$h_c / h_e = 0.42$ - Coefficient, $GC_{pn-} = -0.5$		
Critical Positive Coefficient, C_{Np} =	0.6	Roof Drag	Factor (Late	ral Pressures)
Critical Negative Coefficient, C _{Nn} =	-0.5	Flat Roof	Trellis	Open Louvers
		1.0	1.1	1.25
MWFRS Gravity Wind Load, WL _p = MWFRS Uplift Wind Load, WL _n =	6.55 psf -5.24 psf	•	Porosity * G * (Porosity * G * (•

 Work Prepared For:
 StruXure Outdoor of Washington

 Project:
 22-52551 - Shane McArthur

 Calculations For:
 Design Loading from Structure Classificaition & Wind

 Lateral Wind Loads on Open or Partially Enclosed Buildings with Transverse

 Frames and Pitched Roofs

 (ASCE 7-16 MWFRS - Ch 28.3.5)

For Open Structures, The Following Lateral Pressure Equation Shall Apply:

p_{open walls} = q_h [(GC_{pf})_{Windward} - (GC_{pf})_{Leeward}] * K_B * K_S * Roof Drag Factor

Where The Gcpf Values Are The Average Of The Load Case B Values For The Edge And Wall Conditions:

GC _{pf Windward} =	0.463				
GC _{pf Leeward} =	-0.332				
Building Width, B =	20.00 ft				
K _B = Frame Width Factor =	1.600	(= 1.8 - 0.01E	8) (Minimum 0.	8)	
Effective Solid Area, A_S =	35.3 ft ²	Open Walls			
Total End Wall Area, A _E =	220.0 ft ²				
Solidity Ratio, φ =	0.161	$(= A_S / A_E)$			
K _S = Shielding Factor =	0.646	(=0.6+ 0.073*(# Frames(min 3) - 3) + (1.25*	;))
Roof Drag Factor	1.25		Roof Drag Fa	ctor	
		Flat Roof	Trellis	Open Louvers	
Open Frame Lateral Pressure, p =	26.42 psf	1.00	1.1	1.25	

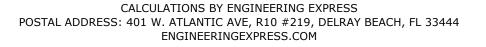
MWFRS Gravity, Uplift, & Lateral Pressures For Enclosed And Partially Enclosed

Low Rise Structures & Host Atachment Directions

(Per ASCE 7-16 CH 28.3.1 - MWFRS Envelope Methodology)

Enclosue Classification	Open Buildin	ng	(Hos	t Attached Flow)
External Coefficient, GCpf =	See Below	(ASCE 7-16 F	igure 28.3-1)	
Internal Coefficient, GCpi =	± 0.00	(ASCE 7-16 T	able 26.13-1)	
Lateral Roof Drag Factor	1.25			
Critical GCpf Values	Per Load Ca	se & Surface L	ocation	
Max	GCpf - Wind	lward	Min GCpf -	Leeward
	Roof	Wall	Roof	Wall
Load Case A	-0.37	0.40	-0.69	-0.29
Load Case A (Edge)	-0.53	0.61	-1.07	-0.43
Load Case B	-0.37	0.40	-0.69	-0.45
Load Case B (Edge)	-0.53	0.61	-1.07	-0.48
Applied Wind Pressure, p =		. ,		*(Envelope Procedure Results in Only Uplift
Envelope Gravity Load, WLep, =	•	= qz*G*(Cpf -	• • • •	
Envelope Uplift Load, WLnp =	•	= qz*G*(Cpf -	• • • •	
Envelope Lateral Load, WL _L =	19.60 psf	= qz*G*(Cpf -	Cpi) (Max ±)	Surfaces When Slope is Low)

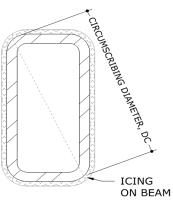



Work Prepared For:StruXure Outdoor of WashingtonProject:22-52551 - Shane McArthurCalculations For:Snow Loading

Calculation of Design Snow Loading

Structure Type = Ground Snow Load, Pg = Snow Loading Unreducible Per Local Codes? Exposure Factor , Ce = Thermal Factor, Ct = Importance factor, Is = Roof Slope = Width (From Eave To Ridge), W = Roof Style = Roof Snow Porosity =	30.0 psf	Partially Exposed Unheated & Open Air Structure Risk Category II Flat Roof (Slope < 5°)
Snow Density, γ = Slope Factor, Cs =	17.90 pcf 1.00	= 0.13* Pg +14 < 30 psf (Figure 7.4-1)
Balanced Snow Loads		(1.94.97117)
Snow Load On Flat Roof (Slope < 5°), P_f =	25.2 psf	= Max(I *20),(0.7 *Ce *Ct* I* Pg),(5)
Snow Load On Sloped Roof (Slope < 5°), P_s =	-	= Cs * Pf
Rain-On-Snow Surcharge Required? (Ch 7.10)	FALSE 0.00 psf	
Drifts on Lower Roofs (Aerodynamic Shade)		
Include Surcharge Due To Drift Loading? (Structure Shall Experience Snow Drift)		
Assumed Length Of Upper Roof, lu1 = Attached Structure Total Projection X, lu2 = Height From Top Of Lower Roof To Top Of Eave, hc = Height of Balanced Snow, h _b = Height Of Leeward Snow Drift, h _{d1} = Height Of Windward Snow Drift, h _{d2} = Governing Drift Height, h _d = Drift Height At Edge Of Lower Roof, h _{end} = Surcharge Load Distributed Over Drift Width, p _d =	2.20 ft 1.08 ft 2.20 ft 8.79 ft 0.00 ft 19.67 psf	= Pf / γ = 0.43 * lu ^{1/3} * (Pg + 10) ^{1/4} - 1.5 = 0.43 * lu ^{1/3} * (Pg + 10) ^{1/4} - 1.5

Design Snow Load, S = 33.9 psf 40.0 ft 26.0 ft 2.20 ft 1.41 ft 8.79 ft8.79 ft


Work Prepared For:StruXure Outdoor of WashingtonProject:22-52551 - Shane McArthurCalculations For:Ice Loading Calculations

Ice Load Due to Freezing Rain (per ASCE 7-16 - Chapter 10)

Acounting for Accumulating Ice on Louver Blades

Nominal Ice Thickness, $t_i = 1.00$ in Risk Category = II Topographic Factor, $K_{zt} = 1.0$ System Height, Z = 11.00 ft Importance Factor for Icing, $I_i = 1.00$ Ice Density, $I_d = 56.0$ pcf (56 pcf default) Snow Density, g = 17.90

Member Properties

Ice Thickness Increasing Factor, $F_z = 0.8960 = (Z/33)^{0.1}$ Design Ice Thickness, $t_d = 0.90 = t_i * l_i * f_z * (K_{zt})^{0.35}$ Weight of Ice (per td), $W_i = 4.18 \text{ psf} = (td / 12) * l_d$

Ice Loading on Individual Members

Louver Blade Ice Loading (Single Member)

Circumscribing Diameter Of Member, $D_{c1} = 7.14$ in $= \sqrt{d^2+bf^2}$ Area of Ice, $A_{i1} = 22.61$ in^2 $= \pi * t_d * (D_c + t_d)$ Uniform Distributed Ice Load, $W_{i1} = 8.79$ plf $= A_i * I_d$

Louver Beam Ice Loading

Circumscribing Diameter Of Member, $D_{cBeam} = 8.25$ in $= \sqrt{d^2+bf^2}$ Area of Ice, $A_{iBeam} = 25.73$ in $= \pi * t_d * (D_c + t_d)$ Uniform Distributed Ice Load, $W_{iBeam} = 10.01$ plf $= A_i * I_d$

Louver Blade Ice Loading Acting On Louver Beam

Ice Load On First Single Member, W _{i1} =	8.79 plf	
Tributary Width of Louver Blade, Trib =	10.00 ft	
Additional Ice Load on Beam, W _{i(Beam)} =	11.0 plf	= W _{i1} * Trib / Spacing

W _{i(Louver)} = 8	.79 plf	Uniform Linear Ice Load (Louver Blade)
W _{i(Beam)} = 10	0.01 plf	Uniform Linear Ice Load (Ice on Beam Only)
W _{i(Beam Total)} = 21	1.00 plf	Total Additional Loading On Beam

Work Prepared For:	StruXure Outdoor of Washington
Project:	22-52551 - Shane McArthur
Calculations For:	Seismic Design Criteria & Loading

Seismic Design Criteria

Max Canaidared Beanance Acceleration Far 0.2.0.5.	4 400	
Max Considered Response Acceleration For 0.2 S, $S_s =$	1.462	
Max Response Acceleration At 1 S, $S_1 =$	0.504	
Overall Width or Projection X, W =	20.00 ft	
Overall Length Y, L =	20.00 ft	
Total Area, A =	400.0 ft ²	
Height of Structure, H =	11.00 ft	
Attached to Host Structure?	TRUE	
Laterally Supported by Host in Both Directions?	FALSE	
Structure Dead Load =	5 psf	
Ground Snow Load =	30 psf	≤ 30 PSF - Not
	_	Considered in Seismic
Site Class =	D	
Short Period Amplification Factor, F _a =	1.2	
Long Period Amplification Factor, F_v =	1.5	
Modified Spectral Response Acceleration At 0.2 S, S_{MS} =	1.754	F _a *S _s
Modified Spectral Response Acceleration At 1.0 S, S_{M1} =	0.756	F _v *S ₁
Spectral Response Acceleration Parameters		
Design Spectral Response Acceleration At 0.2 S, S _{DS} =	1.170	(2/3)*S _{ms}
Design Spectral Response Acceleration At 1.0 S, S _{D1} =	0.504	(2/3)*S _{M1}
Structural Design Requirements		
Approximate Fundamental Period (s), T _a =	0.121 s	$C_t * h_n^x$
Geographic Long Transition Period (s), T_{L} =	6 s	
Vertical Seismic Load Effect, E_V =	0.82 psf	Vertical Seismic Loads (PSF)
Response Modification Coefficient, Rp =	2.50	Structure Directly Supported by Host
Overstrength Factor, Ω =	2.00	Host Attached
Amplification Factor, ap =	2.500	
Min Seismic Response Coefficient, CS Min =	0.101	
Component Importance Factor, Ip =	1.00	
Seismic Importance Factor, Ie =	1.00	
, , , , , , , , , , , , , , , , , , ,		
Tributary Weight with Additional Snow Load, Wp =	2000 lb	Tributary Weight
Total Effective Seismic Design Force, Fp =	1871 lb	= 0.4* ap* SDS* Wp/ (Rp / Ip)* (1+ 2 (z/ h))
FpMAX=	3742.72 lbs	
ASD Service Factor =	0.7	
Redundancy Factor, ρ =	1.0	
Total Effective Seismic Moment, M _{SEIS} =	14409 lb-ft	= V * H
Loading from Horizaontal Seismic Forces, Q _E =	4.68 psf	= V / A
Horizontal Siesmic Load Effect, $E_{h} =$	•	= QE * ρ (Eq. 12.4-3)
, 11	•	· · · · /

Work Prepared For:	StruXure Outdoor of Washington
Project:	22-52551 - Shane McArthur
Calculations For:	ASD Loading Combinations per ASCE 7-16, Chapter 2.4
	Formatted For Use With Freestanding or Host Attached Pergolas

Unfactored, Calculated, or Provided Loads

Dead Load5.0 psfD =5.0 psfLive Load0.0 psfL =0.0 psfReduced Roof Live Load16.0 psfL =0.0 psfLoading From WindComponents & CladdingGravity (+)6.6 psfW _{CC+} =6.6 psfUplift (-)-5.2 psfW _{CC-} =-5.2 psfMain Wind Force Resisting SystemGravity (+)6.6 psfW _{MWF+} =6.6 psfUplift (-)-27.5 psfW _{MWF+} =-27.5 psfLateral ForceOn Fascia & Roof Drag26.4 psfW _{LAT FAC} =26.4 psfOn Fascia & Roof Drag26.4 psfW _{LAT WALL} =26.4 psfOn Walls & Posts26.4 psfW _{LAT WALL} =26.4 psfLoading from SnowGround Snow Load30.0 psfps =25.2 psfSloped Roof Snow Load25.2 psfps =25.2 psfUnreducible Snow Load33.9 psfS =33.9 psfLoading from IcingArea Ice Loading8.8 psfD _i =8.8 psfReduced Wind Forces due to Ice LoadComponents & CladdingGravity (+)1.9 psfW _{CCice+} =1.9 psfUplift (-)-1.6 psfW _{CCice+} =1.9 psfUplift (-)-1.6 psfW _{CCice+} =-1.6 psf	Loading From S		
Reduced Roof Live Load16.0 psf $L_R =$ 16.0 psfLoading From WindGravity (+)6.6 psf $W_{CC+} =$ 6.6 psfUplift (-)-5.2 psf $W_{CC-} =$ -5.2 psfMain Wind Force Resisting SystemGravity (+)6.6 psf $W_{MWF+} =$ 6.6 psfUplift (-)-27.5 psf $W_{MWF+} =$ 6.6 psfUplift (-)-27.5 psf $W_{MWF+} =$ 26.4 psfLateral ForceOn Fascia & Roof Drag26.4 psf $W_{LAT FAC} =$ 26.4 psfOn Fascia & Roof Drag26.4 psf $W_{LAT WALL} =$ 26.4 psfOn Walls & Posts26.4 psf $W_{LAT WALL} =$ 26.4 psfOn Walls & Posts26.4 psf $W_{LAT WALL} =$ 26.4 psfDon Walls & Posts26.2 psf $p_f =$ 25.2 psfDon Walls & Posts25.2 psf $p_s =$ 25.2 psfDureducible Snow Load33.9 psf $S =$ 33.9 psfDesign Snow Load33.9 psf $S =$ 33.9 psfDesign Snow Load33.9 psf $S =$ $S =$ $S =$ $S =$ $S =$ Loading from lcingArea Ice Loading $S =$	Dead Load	5.0 psf	D = 5.0 psf
Loading From Wind $\begin{array}{c} & \text{Gravity}(+) & 6.6 \text{ psf} & W_{\text{CC}+} = & 6.6 \text{ psf} \\ & \text{Uplift}(-) & -5.2 \text{ psf} & W_{\text{CC}-} = & -5.2 \text{ psf} \\ & \text{Main Wind Force Resisting System} \\ & \text{Gravity}(+) & 6.6 \text{ psf} & W_{\text{MWF+}} = & 6.6 \text{ psf} \\ & \text{Uplift}(-) & -27.5 \text{ psf} & W_{\text{MWF-}} = & -27.5 \text{ psf} \\ & \text{Lateral Force} \\ & \text{On Fascia & Roof Drag} & 26.4 \text{ psf} & W_{\text{LAT FAC}} = & 26.4 \text{ psf} \\ & \text{On Walls & Posts} & 26.4 \text{ psf} & W_{\text{LAT WALL}} = & 26.4 \text{ psf} \\ & \text{On Walls & Posts} & 26.4 \text{ psf} & W_{\text{LAT WALL}} = & 26.4 \text{ psf} \\ & \text{Conding from Snow} \\ & \text{Ground Snow Load} & 30.0 \text{ psf} \\ & \text{Flat Roof Snow Load} & 25.2 \text{ psf} & p_{s} = & 25.2 \text{ psf} \\ & \text{Sloped Roof Snow Load} & 25.2 \text{ psf} & p_{s} = & 25.2 \text{ psf} \\ & \text{Design Snow Load} & 33.9 \text{ psf} \\ & \text{Design Snow Load} & 33.9 \text{ psf} \\ & \text{Design Snow Load} & 33.9 \text{ psf} \\ & \text{Gravity}(+) & 1.9 \text{ psf} & D_{i} = & 8.8 \text{ psf} \\ & \text{Uplift}(-) & -1.6 \text{ psf} & W_{\text{CCice+}} = & 1.9 \text{ psf} \\ & \text{Uplift}(-) & -1.6 \text{ psf} & W_{\text{CCice+}} = & -1.6 \text{ psf} \\ \end{array}$			
Components & CladdingGravity (+)6.6 psf $W_{CC+} =$ 6.6 psfUplift (-)-5.2 psf $W_{CC-} =$ -5.2 psfMain Wind Force Resisting SystemGravity (+)6.6 psf $W_{MWF+} =$ 6.6 psfUplift (-)-27.5 psf $W_{MWF+} =$ 6.6 psfLateral ForceOn Fascia & Roof Drag26.4 psf $W_{LAT FAC} =$ 26.4 psfOn Fascia & Roof Drag26.4 psf $W_{LAT WALL} =$ 26.4 psfOn Walls & Posts26.4 psf $W_{LAT WALL} =$ 26.4 psfLoading from Snow30.0 psfFlat Roof Snow Load25.2 psf $p_s =$ Sloped Roof Snow Load25.2 psf $p_s =$ 25.2 psfUnreducible Snow Load33.9 psf $S =$ 33.9 psfLoading from lcingArea loe Loading8.8 psf $D_i =$ 8.8 psfLoading from lcingGravity (+)1.9 psf $W_{CCioe+} =$ 1.9 psfUplift (-)-1.6 psf $W_{CCioe+} =$ 1.9 psfUplift (-)	Reduced Roof Live Load	16.0 psf	L _R = 16.0 psf
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Loading From Wind		
$\begin{array}{ccccc} \mbox{Uplift} (-) & -5.2 \mbox{ psf} & \mbox{W}_{CC-} = & -5.2 \mbox{ psf} \\ \mbox{Main Wind Force Resisting System} \\ \mbox{Gravity} (+) & 6.6 \mbox{ psf} & \mbox{W}_{MWF+} = & 6.6 \mbox{ psf} \\ \mbox{Uplift} (-) & -27.5 \mbox{ psf} & \mbox{W}_{MWF-} = & -27.5 \mbox{ psf} \\ \mbox{Lateral Force} & & \mbox{Uplift} & \mbox{Uplift} & \mbox{Qround Snow Drag} & 26.4 \mbox{ psf} & \mbox{W}_{LAT \mbox{FAC}} = & 26.4 \mbox{ psf} \\ \mbox{On Walls & Posts} & 26.4 \mbox{ psf} & \mbox{W}_{LAT \mbox{WALL}} = & 26.4 \mbox{ psf} \\ \mbox{Loading from Snow} & & \mbox{Ground Snow Load} & 30.0 \mbox{ psf} \\ \mbox{Flat Roof Snow Load} & 25.2 \mbox{ psf} & \mbox{ps} = & 25.2 \mbox{ psf} \\ \mbox{Unreducible Snow Load} & 25.2 \mbox{ psf} & \mbox{ps} = & 25.2 \mbox{ psf} \\ \mbox{Unreducible Snow Load} & 33.9 \mbox{ psf} & \mbox{psf} \\ \mbox{Design Snow Load} & 33.9 \mbox{ psf} & \mbox{S} = & 33.9 \mbox{ psf} \\ \mbox{Loading from lcing} & \mbox{Area lce Loading} & 8.8 \mbox{ psf} & \mbox{D}_i = & 8.8 \mbox{ psf} \\ \mbox{Ccice+} = & 1.9 \mbox{ psf} \\ \mbox{Uplift} (-) & -1.6 \mbox{ psf} & \mbox{W}_{CCice+} = & -1.6 \mbox{ psf} \\ \mbox{Uplift} (-) & -1.6 \mbox{ psf} & \mbox{W}_{CCice+} = & -1.6 \mbox{ psf} \\ \mbox{Uplift} (-) & -1.6 \mbox{ psf} & \mbox{W}_{CCice+} = & -1.6 \mbox{ psf} \\ \mbox{Uplift} (-) & -1.6 \mbox{ psf} & \mbox{W}_{CCice+} = & -1.6 \mbox{ psf} \\ \mbox{Uplift} (-) & -1.6 \mbox{ psf} & \mbox{W}_{CCice+} = & -1.6 \mbox{ psf} \\ \mbox{Uplift} (-) & -1.6 \mbox{ psf} & \mbox{W}_{CCice+} = & -1.6 \mbox{ psf} \\ \mbox{Uplift} (-) & -1.6 \mbox{ psf} & \mbox{W}_{CCice+} = & -1.6 \mbox{ psf} \\ \mbox{Uplift} (-) & -1.6 \mbox{ psf} & \mbox{W}_{CCice+} = & -1.6 \mbox{ psf} \\ \mbox{Uplift} (-) & -1.6 \mbox{ psf} & \mbox{W}_{CCice+} = & -1.6 \mbox{ psf} \\ \mbox{Uplift} (-) & -1.6 \mbox{ psf} & \mbox{W}_{CCice+} = & -1.6 \mbox{ psf} \\ \mbox{Uplift} (-) & -1.6 \mbox{ psf} & \mbox{W}_{CCice+} = & -1.6 \mbox{ psf} \\ \mbox{Uplift} (-) & -1.6 \mbox{Uplift} (-) & -1.6 \mbox{Uplift} (-) & -1.6 \mbox{Uplift} (-) & -1.6 \mbox{Uplift} $	Components &	Cladding	
Main Wind Force Resisting SystemGravity (+) 6.6 psf $W_{MWF+} = 6.6 \text{ psf}$ Uplift (-) -27.5 psf $W_{MWF+} = -27.5 \text{ psf}$ Lateral Force $W_{MWF-} = -27.5 \text{ psf}$ $W_{MWF-} = -27.5 \text{ psf}$ Con Fascia & Roof Drag 26.4 psf $W_{LAT FAC} = 26.4 \text{ psf}$ On Fascia & Roof Drag 26.4 psf $W_{LAT WALL} = 26.4 \text{ psf}$ On Walls & Posts 26.4 psf $W_{LAT WALL} = 26.4 \text{ psf}$ Loading from Snow 30.0 psf $p_f = 25.2 \text{ psf}$ Sloped Roof Snow Load 25.2 psf $p_f = 25.2 \text{ psf}$ Sloped Roof Snow Load 25.2 psf $p_s = 25.2 \text{ psf}$ Unreducible Snow Load 33.9 psf $S = 33.9 \text{ psf}$ Loading from IcingArea Ice Loading 8.8 psf $D_i = 8.8 \text{ psf}$ Reduced Wind Forces due to Ice Load Components & Cladding $W_{CCice+} = 1.9 \text{ psf}$ Uplift (-) -1.6 psf $W_{CCice+} = -1.6 \text{ psf}$	Gravity (+)	6.6 psf	W _{CC+} = 6.6 psf
$ \begin{array}{cccc} Gravity (+) & 6.6 \ psf & W_{MWF+} = & 6.6 \ psf \\ Uplift (-) & -27.5 \ psf & W_{MWF-} = & -27.5 \ psf \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Uplift (-)	-5.2 psf	W _{CC-} = -5.2 psf
$\begin{array}{cccccc} Uplift (-) & -27.5 \ \text{psf} & W_{\text{MWF-}} = & -27.5 \ \text{psf} \\ \hline \textbf{Lateral Force} & & & & & & \\ On Fascia \& Roof Drag & 26.4 \ \text{psf} & W_{\text{LAT FAC}} = & 26.4 \ \text{psf} \\ On Walls \& Posts & 26.4 \ \text{psf} & W_{\text{LAT WALL}} = & 26.4 \ \text{psf} \\ \hline \textbf{Loading from Snow} & & & & & \\ \hline \textbf{Ground Snow Load} & 30.0 \ \text{psf} & & & \\ Flat Roof Snow Load & 25.2 \ \text{psf} & & & \\ P_{f} = & 25.2 \ \text{psf} \\ \hline \textbf{Sloped Roof Snow Load} & 25.2 \ \text{psf} & & \\ D_{r} = & 25.2 \ \text{psf} \\ \hline \textbf{Unreducible Snow Load} & 33.9 \ \text{psf} \\ \hline \textbf{Design Snow Load} & 33.9 \ \text{psf} & & \\ \hline \textbf{Loading from lcing} & & & \\ \hline \textbf{Area lce Loading 8.8 \ psf} & & \\ \hline \textbf{Mathematications} & & \\ \hline \textbf{Components \& Cladding} \\ \hline \textbf{Gravity (+)} & 1.9 \ \text{psf} & & \\ \hline \textbf{W}_{\text{CCice+}} = & 1.9 \ \text{psf} \\ \hline \textbf{Uplift (-)} & -1.6 \ \text{psf} & & \\ \hline \textbf{W}_{\text{CCice+}} = & -27.5 \ \text{psf} \\ \hline \textbf{M}_{\text{LAT WALL}} = & 26.4 \ \text{psf} \\ \hline \textbf{M}_$	Main Wind Forc	e Resisting Syst	em
Lateral ForceOn Fascia & Roof Drag 26.4 psf $W_{LAT FAC} = 26.4 \text{ psf}$ On Walls & Posts 26.4 psf $W_{LAT WALL} = 26.4 \text{ psf}$ Loading from Snow 26.4 psf $W_{LAT WALL} = 26.4 \text{ psf}$ Loading from Snow $Ground Snow Load$ 30.0 psf Flat Roof Snow Load 25.2 psf $p_f = 25.2 \text{ psf}$ Sloped Roof Snow Load 25.2 psf $p_s = 25.2 \text{ psf}$ Unreducible Snow Load 33.9 psf $S = 33.9 \text{ psf}$ Loading from Icing $Area Ice Loading$ 8.8 psf $D_i = 8.8 \text{ psf}$ Reduced Wind Forces due to Ice Load Components & Cladding $W_{CCice+} = 1.9 \text{ psf}$ Uplift (-)-1.6 \text{ psf} $W_{CCice-} = -1.6 \text{ psf}$	Gravity (+)	6.6 psf	W _{MWF+} = 6.6 psf
$\begin{array}{cccc} & \text{On Fascia \& Roof Drag} & 26.4 \text{ psf} & W_{\text{LAT FAC}} = 26.4 \text{ psf} \\ & \text{On Walls \& Posts} & 26.4 \text{ psf} & W_{\text{LAT WALL}} = 26.4 \text{ psf} \\ \end{array}$ $\begin{array}{ccccc} & \text{Loading from Snow} \\ & \text{Ground Snow Load} & 30.0 \text{ psf} \\ & \text{Flat Roof Snow Load} & 25.2 \text{ psf} & p_{\text{f}} = 25.2 \text{ psf} \\ & \text{Sloped Roof Snow Load} & 25.2 \text{ psf} & p_{\text{s}} = 25.2 \text{ psf} \\ & \text{Unreducible Snow Load} & 33.9 \text{ psf} & p_{\text{s}} = 25.2 \text{ psf} \\ & \text{Design Snow Load} & 33.9 \text{ psf} & S = 33.9 \text{ psf} \\ \end{array}$ $\begin{array}{cccccccc} & \text{Loading from Icing} & & \\ & \text{Area Ice Loading} & 8.8 \text{ psf} & D_{\text{i}} = 8.8 \text{ psf} \\ & \text{Reduced Wind Forces due to Ice Load} \\ & \text{Components \& Cladding} \\ & \text{Gravity (+)} & 1.9 \text{ psf} & W_{\text{CCice+}} = 1.9 \text{ psf} \\ & \text{Uplift (-)} & -1.6 \text{ psf} & W_{\text{CCice+}} = -1.6 \text{ psf} \end{array}$	Uplift (-)	-27.5 psf	W _{MWF-} = -27.5 psf
On Walls & Posts 26.4 psf $W_{LAT WALL} = 26.4 psf$ Loading from Snow Ground Snow Load 30.0 psf Flat Roof Snow Load 25.2 psf $p_f = 25.2 psf$ Sloped Roof Snow Load 25.2 psf $p_s = 25.2 psf$ Unreducible Snow Load 33.9 psf $S = 33.9 psf$ Design Snow Load 33.9 psf $S = 33.9 psf$ Loading from Icing Area Ice Loading 8.8 psf $D_i = 8.8 psf$ Reduced Wind Forces due to Ice Load Components & Cladding Gravity (+) 1.9 psf $W_{CCice+} = 1.9 psf$ Uplift (-) -1.6 psf $W_{CCice+} = -1.6 psf$	Lateral Force		
Loading from SnowGround Snow Load 30.0 psf $p_f = 25.2 \text{ psf}$ Flat Roof Snow Load 25.2 psf $p_f = 25.2 \text{ psf}$ Sloped Roof Snow Load 25.2 psf $p_s = 25.2 \text{ psf}$ Unreducible Snow Load 33.9 psf $S = 33.9 \text{ psf}$ Design Snow Load 33.9 psf $S = 33.9 \text{ psf}$ Loading from IcingArea Ice Loading 8.8 psf $D_i = 8.8 \text{ psf}$ Reduced Wind Forces due to Ice Load Components & CladdingGravity (+) 1.9 psf $W_{CCice+} = 1.9 \text{ psf}$ Uplift (-) -1.6 psf $W_{CCice-} = -1.6 \text{ psf}$	On Fascia & Roof Drag	26.4 psf	W _{LAT FAC} = 26.4 psf
$\begin{array}{ccccc} & Ground Snow Load & 30.0 \ psf \\ Flat Roof Snow Load & 25.2 \ psf & p_{f} = 25.2 \ psf \\ Sloped Roof Snow Load & 25.2 \ psf & p_{s} = 25.2 \ psf \\ Unreducible Snow Load & 33.9 \ psf & S = 33.9 \ psf \\ Design Snow Load & 33.9 \ psf & S = 33.9 \ psf \\ \hline \begin{tabular}{lllllllllllllllllllllllllllllllllll$	On Walls & Posts	26.4 psf	$W_{LAT WALL} = 26.4 \text{ psf}$
$\begin{array}{ccccc} & Ground Snow Load & 30.0 \ psf \\ Flat Roof Snow Load & 25.2 \ psf & p_{f} = 25.2 \ psf \\ Sloped Roof Snow Load & 25.2 \ psf & p_{s} = 25.2 \ psf \\ Unreducible Snow Load & 33.9 \ psf & S = 33.9 \ psf \\ Design Snow Load & 33.9 \ psf & S = 33.9 \ psf \\ \hline \begin{tabular}{lllllllllllllllllllllllllllllllllll$	Loading from Snow		
Flat Roof Snow Load 25.2 psf $p_f = 25.2 \text{ psf}$ Sloped Roof Snow Load 25.2 psf $p_s = 25.2 \text{ psf}$ Unreducible Snow Load 33.9 psf $S = 33.9 \text{ psf}$ Design Snow Load 33.9 psf $S = 33.9 \text{ psf}$ Loading from Icing Area Ice Loading 8.8 psf $D_i = 8.8 \text{ psf}$ Reduced Wind Forces due to Ice Load Components & Cladding Gravity (+) 1.9 psf $W_{CCice+} = 1.9 \text{ psf}$ Uplift (-) -1.6 psf $W_{CCice-} = -1.6 \text{ psf}$	-	30.0 psf	
$\begin{array}{ccccc} Sloped Roof Snow Load & 25.2 \ psf & p_s = & 25.2 \ psf \\ Unreducible Snow Load & 33.9 \ psf & S = & 33.9 \ psf \\ \hline \mbox{Design Snow Load} & 33.9 \ psf & S = & 33.9 \ psf \\ \hline \mbox{Loading from Icing} & & & \\ Area \ Ice \ Loading & 8.8 \ psf & D_i = & 8.8 \ psf \\ \hline \mbox{Reduced Wind Forces due to Ice Load} \\ \hline \mbox{Components \& Cladding} & & \\ Gravity (+) & 1.9 \ psf & W_{CCice+} = & 1.9 \ psf \\ \hline \mbox{Uplift (-)} & -1.6 \ psf & W_{CCice-} = & -1.6 \ psf \\ \hline \end{array}$		•	p _f = 25.2 psf
Unreducible Snow Load 33.9 psf $S = 33.9 \text{ psf}$ Design Snow Load 33.9 psf $S = 33.9 \text{ psf}$ Loading from Icing Area Ice Loading 8.8 psf $D_i = 8.8 \text{ psf}$ Reduced Wind Forces due to Ice Load Components & Cladding Gravity (+) 1.9 psf $W_{CCice+} = 1.9 \text{ psf}$ Uplift (-) -1.6 psf $W_{CCice-} = -1.6 \text{ psf}$		•	
Design Snow Load 33.9 psf S = 33.9 psf Loading from IcingArea Ice Loading 8.8 psf $D_i =$ 8.8 psf Reduced Wind Forces due to Ice Load Components & Cladding $W_{ccice+} =$ 1.9 psf Gravity (+) 1.9 psf $W_{cCice+} =$ 1.9 psf Uplift (-) -1.6 psf $W_{cCice-} =$ -1.6 psf	•	•	F2 F2.
Area Ice Loading 8.8 psf $D_i = 8.8 \text{ psf}$ Reduced Wind Forces due to Ice Load Components & Cladding $W_{CCice+} = 1.9 \text{ psf}$ Gravity (+) 1.9 psf $W_{CCice+} = 1.9 \text{ psf}$ Uplift (-) -1.6 psf $W_{CCice-} = -1.6 \text{ psf}$			S = 33.9 psf
Area Ice Loading 8.8 psf $D_i = 8.8 \text{ psf}$ Reduced Wind Forces due to Ice Load Components & Cladding $W_{CCice+} = 1.9 \text{ psf}$ Gravity (+) 1.9 psf $W_{CCice+} = 1.9 \text{ psf}$ Uplift (-) -1.6 psf $W_{CCice-} = -1.6 \text{ psf}$	Loading from Icing		
Components & Cladding Gravity (+) 1.9 psf W _{CCice+} = 1.9 psf Uplift (-) -1.6 psf W _{CCice-} = -1.6 psf	Area Ice Loading	8.8 psf	D _i = 8.8 psf
Gravity (+) 1.9 psf W_{CCice+} = 1.9 psf Uplift (-) -1.6 psf W_{CCice-} = -1.6 psf	Reduced Wind I	Forces due to Ice	e Load
Uplift (-) -1.6 psf $W_{CCice} = -1.6 \text{ psf}$	Components &	Cladding	
	Gravity (+)	1.9 psf	W _{CCice+} = 1.9 psf
Main Wind Force Resisting System	Uplift (-)	-1.6 psf	W _{CCice-} = -1.6 psf
	Main Wind Force Resisting System		
Gravity (+) 1.9 psf W _{MWFice+} = 1.9 psf	Gravity (+)	1.9 psf	W _{MWFice+} = 1.9 psf
Uplift (-) -8.2 psf $W_{MWFice} = -8.2 \text{ psf}$	Uplift (-)	-8.2 psf	W _{MWFice-} = -8.2 psf
Lateral Force	Lateral Force	-	
On Fascia 7.9 psf W _{iLAT} = 7.9 psf	On Fascia	7.9 psf	W _{iLAT} = 7.9 psf
On Walls 7.9 psf $W_{LAT WALL} = 7.9 psf$	On Walls	7.9 psf	$W_{LAT WALL} = 7.9 \text{ psf}$

•	e McArthur ombinations per AS0	CE 7-16, Chapter 2.4 onal Design Conditions
Rain Load	0.0 psf	R = 0.0 psf
Static Fluid Load	0.0 psf	F = 0.0 psf
Flood Risk (2.4.2)	Low	Factor 0
Flood Load	0.0 psf	F _a = 0.0 psf
Lateral Earth Pressure Load	0.0 psf	
LatEPr Adds or Resists?	Adds	H = 0.0 psf
Self-Straining Force	0.0 psf	T = 0.0 psf
Loading from Sei	smic Forces	
Vertical Seismic Load	0.8 psf	$E_v = 0.8 \text{psf}$
Horizontal Seismic Load	4.7 psf	E _h = 4.7 psf

Allowable Stress Design (ASD) Load Combinations Per ASCE 7-16 Ch 2.4

Critical Design Load Combinations for Components & Cladding and Main Wind Force Resisting System:

Gravity Components & Cladding	38.85 psf	EQ # 3b.	D + S
Uplift Components & Cladding	-10.00 psf	EQ # 11 Min.	Min Requirement
Gravity Main Wind Force	38.85 psf	EQ # 3b.	D + S
Uplift Main Wind Force	-13.50 psf	EQ # 7.	0.6 D + 0.6 W
Lateral Components & Cladding	15.85 psf	EQ # 5.	D + 0.6 W
Lateral Main Wind Force	15.85 psf	EQ # 5.	D + 0.6 W

Work Prepared For:	StruXure Outdoor of Washington
Project:	22-52551 - Shane McArthur
Calculations For:	5.087"x5.006" 6063-T6 Standard Aluminum Louver - Louver Blade

ALUMINUM DESIGN MANUAL (2015 EDITION)

Specifications for Aluminum Structures (Buildings)

Allowable Stress Design

Design Check of 5.087"x5.006" 6063-T6 Standard Aluminum Louver

Per 2015 Aluminum Design Manua

Critically Welded: Alloy: 6063 Temper: Τ6 Ν

Member Properties

5.087"x5.006" 6063-T6 Standard Aluminum Louver

Base Width, b =

Web Height, h =

Base Thickness. tb =

Web Thickness, th =

Torsional Constant, J =

Cross Sectional Area, A =

Warping Constant, Cw =

Plastic Section Modulis, Z =

5.087"

0.125"

5.006"

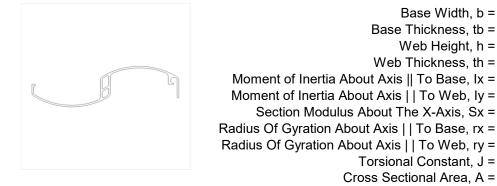
0.250"

2.454 in^4

1.180 in^4

1.062 in^4

1.66 in


1.15 in

19.15 in⁴

0.89 in^2

4.52 in^3

0.00 in^6

(Louver In Open Position)

Member Spans

Unsupported Length (Max Span Between Supports), L = 10.0) ft
--	------

- 10.0 ft Unbraced Length For Bending (Against Side-Sway), Lb =
 - Effective Length Factor, k = 1.0

Material Properties

Tensile Ultimate Strength, Ftu = 30 ksi Tensile Yield Strength, Fty = 25 ksi Compressive Yield Strength, Fcy = 25 ksi Shear Ultimate Strength, Fsu = 18 ksi Shear Yield Strength, Fsy = 15 ksi Compressive Modulus Of Elasticity, E = 10,100 ksi

Work Prepared For: Project: Calculations For:	StruXure Outdoor of Washington 22-52551 - Shane McArthur 5.087''x5.006'' 6063-T6 Standard Aluminum Louver - L	ouver Blade
Buckling Constants		
Co	ompression In Columns & Beam Flanges (Intercept), Bc =	27.64 ksi
	Compression In Columns & Beam Flanges (Slope), Dc =	0.14 ksi
Com	pression In Columns & Beam Flanges (Intersection), Cc =	78.38 ksi
	Compression In Flat Plates (Intercept), Bp =	31.39 ksi
	Compression In Flat Plates (Slope), Dp =	0.17 ksi
	Compression In Flat Plates (Intersection), Cp =	73.55 ksi
Compressive B	ending Stress In Solid Rectangular Bars (Intercept), Bbr =	46.12 ksi
Compressive	e Bending Stress In Solid Rectangular Bars (Slope), Dbr =	0.38 ksi
	Shear Stress In Flat Plates (Intercept), Bs =	18.98 ksi
	Shear Stress In Flat Plates (Slope), Ds =	0.08 ksi
	Shear Stress In Flat Plates (Intersection), Cs =	94.57 ksi
Ultimate	Strength Coefficient Of Flat Plates In Compression, k1c =	0.35
Ultimate	Strength Coefficient Of Flat Plates In Compression, k2c =	2.27
Ultir	mate Strength Coefficient Of Flat Plates In Bending, k1b =	0.50
	mate Strength Coefficient Of Flat Plates In Bending, k2b =	2.04
	Tension Coefficient, kt =	1.0

Member Strength Calculations

D.2 Axial Tension

Tensile Yielding - Unwelded Members	Fty_n =	25.00 ksi
	Ω =	1.65
	Fty_n /Ω =	15.15 ksi
Tensile Rupture - Unwelded Members	Ftu_n =	30.00 ksi
	Ω =	1.95
	Ftu_n/ Ω t =	15.38 ksi

Axial Compression Members

E.2 Compression Member Buckling

Axial, Gross Section Subject To Buckling

Lower Slendern	ess Limit, λ1 =	18.23	
Upper Slendern	ess Limit, λ2 =	78.38	
Slenderr	ness, λ(max) =	103.99	≥ λ2
[0.85π²E/λ²]	Fc_n =	7.84 ksi	
	Ω =	1.65	
	Fc_n /Ω =	4.75 ksi	

Work Prepared For:	StruXure Outdoor of Washington
Project:	22-52551 - Shane McArthur
Calculations For:	5.087"x5.006" 6063-T6 Standard Aluminum Louver - Louver Blade
E.3 Local Buckling	
For Column Elements In U	niform Compression Subject To

For Column Elements In Uniform Compression Subject To Local Buckling, The Uniform Compressive Strength Is B.5.4.2 - Flat Elements Supported On Both Edges (Base) B.5.4.2 - Flat Elements Supported On Both Edges (Web)

E.4 Buckling Interaction Per Table B.5.1

B.5.1	[π²*E/ (1.6*b/tb)²]	Fe(flange) =	28.92 ksi
	[Fc_n]	Fc_n =	7.84 ksi
	Fe(flange) > Fc_n (E.2 Member Buckling)	Ω =	1.65
		Fc_n /Ω =	4.75 ksi
	[π²*E/ (1.6*h/th)²]	Fe(web) =	107.59 ksi
	[Fc_n]	Fc_n =	7.84 ksi
	Fe(web) > Fc_n (E.2 Member Buckling)	Ω =	1.65
		Fc_n /Ω =	4.75 ksi

Flexural Members

F.2 Yielding And Rupture

Nominal Flexural Strength For Yielding And Rupture Limit State Of Yielding	
<i>[1.5*St*Fty]</i> Mnp =	39.83 k-in
<i>[Mnp/Sx]</i> Fb_n =	37.50 ksi
Ω =	1.65
Fb_n /Ω =	22.73 ksi
Limit State Of Rupture	
[Z* <i>Ftu/kt</i>] Mnu =	135.52 k-in
<i>[Mnu/Z]</i> Fb_n =	30.00 ksi
Ω =	1.95
$Fb_n/\Omega =$	15.38 ksi
_	
F.4 Lateral-Torsional Buckling	
Square Or Rectangular Tubes Subject To Lateral-Torsional Buckling	
Slenderness For Shapes Symmetric About The Bending Axis, λ F.4.2.1 =	11.81
Slenderness For Closed Shapes, λ F.4.2.3 =	11.91
Slenderness For Any Shape, λ F.4.2.5 =	11.81
Maximum Slenderness, λ(max) =	11.91
Nominal Flexural Strength - Lateral-Torsional Buckling	
$[Mnp(1-(\lambda/Cc))+(\pi^{2*}E^*\lambda^*Sx/Cc^*3)] \qquad Mnmb =$	36.39 k-in
[Mnmb/Sx] Fb_n =	34.27 ksi
Ω =	1.65
Fb_n /Ω =	20.77 ksi

< Cc

Work Prepared For:	StruXure Outdoor of Washington
Project:	22-52551 - Shane McArthur
Calculations For:	5 087"x5 006" 6063-T6 Standard Alumi

Calculations For: 5.087"x5.006" 6063-T6 Standard Aluminum Louver - Louver Blade

Uniform Compression Elements

B.5.4.2 Flat Elements Supported On Both Edges - Web & Flange

Uniform Compression Strength, Flat Elements Supported On Both Edges

Lower Slenderness Limit, $\lambda 1 =$		22.8	
Upper Slender	ness Limit, λ2 =	39.2	
Flange Sler	nderness, b/tb =	36.7	λ1 - λ2
Web Sler	nderness, h/th =	19.02	≤ λ1
[Bp-1.6*Dp*b/tb]	Fc_n1 =	21.11 ksi	
	Ω =	1.65	
	Fc_n1 /Ω =	12.80 ksi	
[Fcy]	Fc_n2 =	25.00 ksi	
	Ω =	1.65	
	Fc_n2/Ω =	15.15 ksi	

Flexural Compression Elements

B.5.5.1 Flat Elements Supported On Both Edges - Web

Flexural Compression Strength, Flat Elements Sup	ported On Both E	dges		
	Lower Slender	ness Limit, λ1 =	34.73	
	Upper Slender	ness Limit, λ2 =	92.95	
	Sler	nderness, h/th =	19.02	≤λ1
	[1.5*Fcy]	Fb_n =	37.50 ksi	
		Ω =	1.65	
		$Fb_n/\Omega =$	22.73 ksi	
Shear				
G.2 Shear Supported On Both Edges - Web				
Members With Flat Elements	Lower Slender	ness Limit, λ1 =	38.73	
Supported On Both Edges	Upper Slender	ness Limit, λ2 =	75.65	
	Sler	nderness, h/th =	19.02	≤ λ1
	[Fsy]	Fv_n =	15.00 ksi	
		Ω =	1.65	
		Fv_n /Ω =	9.09 ksi	

CALCULATED ALLOWABLE STRESSES

Allowable Bending Stress, F_{b} =	15.38 ksi
Allowable Axial Stress, Compression, F_{ac} =	4.75 ksi
Allowable Shear Stress; Webs, F_v =	9.09 ksi

Elastic Buckling Stress, Fe = 4.73 ksi

Weighted Average Allowable Compressive Stress (Per Section E.3.1), Fao = 14.39 ksi

 Work Prepared For:
 StruXure Outdoor of Washington

 Project:
 22-52551 - Shane McArthur

 Calculations For:
 5.087"x5.006" 6063-T6 Standard Aluminum Louver - Louver Blade

 Member Loading & Capacity Calculation

 Dimensions & Loading Inputs

Layout Style =	Layout # 1
	Louver
Beam Use =	C&C
Beam Total Length, L =	10.00 ft
# Spans =	1
Max Beam Span (Between Supports), I =	10.00 ft
Beam Overhang Left, OhL =	0.00 ft
Beam Overhang Right, OhR =	0.00 ft
Beam Location =	Intermediate
Point Load At Left Overhang, PohL =	0 lb
Point Load At Right Overhang, PohR =	0 lb
Point Load #1 (Left) On Span, P1 =	0 lb
Point Load #1 Offset, a =	0.00 ft
Point Load #2 (Right) On Span, P2 =	0.0 lb
Point Load #2 Offset, b =	0.00 ft
Resultant Weight Loading On Tributary, RL =	38.9 psf
Tributary Width, W =	0.67 ft
Additional Beam Loading (Icing, Service, Ect), AL =	8.79 lb/ft
Linear Loading On Beam, w =	34.7 lb/ft
Shear In Member And Compression / Tension Reactions At Supports	0.11-
Max Reaction From Span Point Loads, Vsp =	0 lb
Left Reaction From Overhang Point Loads, VopL =	0 lb
Right Reaction Right Overhang Point Loads, VopR =	0 lb
Max Reaction From Span Weight, Vsw=	173 lb 1
Reaction From Weight Adjustment Factor For Multi-Span, Vwaf = Adjusted Reaction From Span & OH Weight, Vsw'=	173 lb
Left Reaction From Overhang Weight, VowL=	0 lb
Right Reaction From Overhang Weight, VowE=	0 lb
Max Tension At Supports, Tmax =	0 lb
Max rension At Supports, rinax =	0.17 Kip
Max compression At Supports, chiax -	0.17 Kip
Bending Moment Calculations	
Moment From Span Point Loads, Msp =	0 lb-ft
Moment From Point Loads Adjustment Factor For Multi-Span, Mpaf =	1.000
Adjusted Moment From Span Point Loads, Msp' =	0 lb-ft
Moment From Left Overhang Point Loads, MohpL =	0 lb-ft
Moment From Right Overhang Point Loads, MohpR =	0 lb-ft
Moment From Span Weight, Mw=	434 lb-ft
Moment From Weight Adjustment Factor For Multi-Span, Mwaf =	1.00
Adjusted Moment From Span & OH Weight, Mw'=	434 lb-ft
Moment From Left Overhang Weight, MohwL =	0 lb-ft
Moment From Right Overhang Weight, MohwR =	0 lb-ft
Total Max Moment At x, Mmaxx =	0.4 Kip-ft
Total Max Moment At Supports, Mmaxs =	0.0 Kip-ft
Absolute Max Moment On Beam, Mmax =	0.4 Kip-ft

Work Prepared For:	StruXure Outdoor of Wa	Ishington		
Project:	22-52551 - Shane McArl	thur		
Calculations For:	5.087"x5.006" 6063-T6	Standard Aluminum Louver - Lo	ouver Blade	
Deflection Calculations				
	Deflection From	n Span Point Loads At x, ∆spx =	0.00 in	
Lo	cation Of Max Moment Fro	om Weight Between Spans, x =	5.00 in	
	Deflection From Ove	rhang Point Loads At x, Δopx =	0.00 in	
	Deflection From Span &	Overhangs Weight At x, Δwx =	0.65 in	
	Point Load Deflection	At Left Overhang End, ΔowL =	0.00 in	
	Point Load Deflection A	At Right Overhang End, $\Delta opR =$	0.00 in	
	Weight Deflection	At Left Overhang End, ΔowL =	0.00 in	
	Weight Deflection A	At Right Overhang End, ΔopR =	0.00 in	
	-	Span Max Deflection, $\Delta sp =$	0.65 in	
	0	verhang Max Deflection, Δoh =	0.00 in	
	-	Total Max Deflection, Δmax =	0.65 in	
	Note: Nega	tive Deflection Values Indicate Up	ward Deflection	1
Member Capacity Equati	ons			
Bending Stress				
	Bending Mome	ent Developed In Member, Mz =	0.4 Kip-ft	
	Bending Str	ress Developed In Member, fb =	4.90 ksi	
Allowable Be	ending Stress Of Member,	Allowable Bending Stress, Fb =	15.38 ksi	
		Bending Moment Capacity =	32%	< 100%
Axial Stress				
	Axial Lo	oad Developed In Member, Fx =	0.00 Kip	
	Axial Str	ress Developed In Member, fa =	0.00 ksi	
	Allowable A	xial Stress, Compression, Fac =	4.75 ksi	
		Axial Stress Capacity =	0%	< 100%
<u>Shear Stress</u>				
	Shear Lo	bad Developed In Member, Vz =	0.17 Kip	
	Shear Sti	ress Developed In Member, fv =	0.07 ksi	
	Allowable Shear	r Stress Of Member Webs, Fv =	9.09 ksi	
		Shear Capacity =	1%	< 100%
Interaction Equations		· · ·		
	ng And Shear Interaction	$\sqrt{[(fb/Fb)^2 + (fv/Fv)^2]} =$	32%	< 100%
	And Bending Interaction	fa/Fa + fb/Fb =	0%	< 100%
Axial With Reduced Ben	ding And Shear Interaction	fa/Fa + (fb/Fb)^2 + (fv/Fv)^2 =	0%	< 100%

Capacity Less than 100% - OK, Member Is Sufficient For Applied Loading

Deflection Check

Deflection Limit =	L / 80		
Allowable Deflection, Δ Allow =	1.50 in		
Maximum Deflection, Δ Max =	0.65 in		
Deflection Capacity =	44%	< 100%	
OK, Allowable Deflection Sufficient			

Work Prepared For:StruXure Outdoor of WashingtonProject:22-52551 - Shane McArthurCalculations For:Beam #1, Single 2"x8"x 0.25"/0.25" 6063-T6 Aluminum Tube - Louver Beam

ALUMINUM DESIGN MANUAL (2015 EDITION)

Specifications for Aluminum Structures (Buildings)

Allowable Stress Design

Design Check of Standard Single 2"x8"x 0.25"/0.25" 6063-T6 Aluminum Tube

Per 2015 Aluminum Design Manua

Critically Alloy: 6063 Temper: T6 Welded: N

Member Properties

Single 2"x8"x 0.25"/0.25" 6063-T6 Aluminum Tube

#	t of Parallel Beams in Section	# Beams =	1
↓ 2.000" ↓		Base Width, b =	2.000"
· · · · · · · · · · · · · · · · · · ·	Ba	ise Thickness, tb =	0.250"
0.250"		Web Height, h =	8.000"
0.250	W	eb Thickness, th =	0.250"
	Moment of Inertia About A	xis To Base, Ix =	32.599 in^4
	Moment of Inertia About A	xis To Web, Iy =	3.224 in^4
x	Section Modulus Abou	It The X-Axis, Sx =	8.150 in^4
	Radius Of Gyration About A	kis To Base, rx =	2.62 in
0.250'	Radius Of Gyration About A	xis To Web, ry =	0.82 in
0.0	Tors	ional Constant, J =	9.68 in^4
	Cross S	Sectional Area, A =	4.75 in^2
		ection Modulis, Z =	10.91 in^3
	Warpi	ng Constant, Cw =	0.00 in^6
Member Spans			
	oported Length (Max Span Betw	een Supports), L =	19.5 ft
	ced Length For Bending (Agains	,	2.0 ft
	Effective	Length Factor, k =	1.0
		-	
Material Properties			
	Tensile Ultim	ate Strength, Ftu =	30 ksi
	Tensile Y	ield Strength, Fty =	25 ksi
	Compressive Yi	eld Strength, Fcy =	25 ksi
		ate Strength, Fsu =	18 ksi
		eld Strength, Fsy =	15 ksi
	Compressive Modulu	is Of Elasticity, E =	10,100 ksi

Work Prepared For: Project: Calculations For:	StruXure Outdoor of Washington 22-52551 - Shane McArthur Beam #1, Single 2''x8''x 0.25''/0.25'' 6063-T6 Aluminum	Tube - Louver Beam
Buckling Constants		
•	ompression In Columns & Beam Flanges (Intercept), Bc =	27.64 ksi
	Compression In Columns & Beam Flanges (Slope), Dc =	0.14 ksi
	pression In Columns & Beam Flanges (Intersection), Cc =	78.38 ksi
Comp	Compression In Flat Plates (Intercept), Bp =	31.39 ksi
	Compression In Flat Plates (Slope), Dp =	0.17 ksi
	Compression In Flat Plates (Intersection), Cp =	73.55 ksi
	ending Stress In Solid Rectangular Bars (Intercept), Bbr =	46.12 ksi
•	o o o o o o o o o o	
Compressive	Bending Stress In Solid Rectangular Bars (Slope), Dbr =	0.38 ksi
	Shear Stress In Flat Plates (Intercept), Bs =	18.98 ksi
	Shear Stress In Flat Plates (Slope), Ds =	0.08 ksi
	Shear Stress In Flat Plates (Intersection), Cs =	94.57 ksi
Ultimate S	Strength Coefficient Of Flat Plates In Compression, k1c =	0.35
Ultimate S	Strength Coefficient Of Flat Plates In Compression, k2c =	2.27
Ultim	nate Strength Coefficient Of Flat Plates In Bending, k1b =	0.50
	nate Strength Coefficient Of Flat Plates In Bending, k2b =	2.04
-	Tension Coefficient, kt =	1.0
	,	

Member Strength Calculations

D.2 Axial Tension

Tensile Yielding - Unwelded Members	Fty_n =	25.00 ksi
	Ω =	1.65
	Fty_n/ Ω =	15.15 ksi
Tensile Rupture - Unwelded Members	Ftu_n =	30.00 ksi
	Ω =	1.95
	Ftu_n /Ωt =	15.38 ksi

Axial Compression Members

E.2 Compression Member Buckling

Axial, Gross Section Subject To Buckling

Lower Slenderne	ess Limit, λ1 =	18.23	
Upper Slenderness Limit, λ2 =		78.38	
Slenderness, $\lambda(max) =$		89.32	≥ λ2
[0.85π²Ε/λ²]	Fc_n =	10.62 ksi	
	Ω =	1.65	
	Fc_n /Ω =	6.44 ksi	

Work Prepared For: StruXure Outdoor of Washington Project: 22-52551 - Shane McArthur

Calculations For: Beam #1, Single 2"x8"x 0.25"/0.25"

Beam #1, Single 2"x8"x 0.25"/0.25" 6063-T6 Aluminum Tube - Louver Beam

E.3 Local Buckling

For Column Elements In Uniform Compression Subject To Local Buckling, The Uniform Compressive Strength Is B.5.4.2 - Flat Elements Supported On Both Edges (Base) B.5.4.2 - Flat Elements Supported On Both Edges (Web)

E.4 Buckling Interaction

Per Table B.5.1	$[\pi^{2*}E/(1.6*b/tb)^{2}]$	Fe(flange) =	1081.63 ksi
	[Fc_n]	Fc_n =	10.62 ksi
	Fe(flange) > Fc_n (E.2 Member Buckling)	Ω =	1.65
		Fc_n /Ω =	6.44 ksi
	[π²*E/ (1.6*h/th)²]	Fe(web) =	43.27 ksi
	[Fc_n]	Fc_n =	10.62 ksi
	Fe(web) > Fc_n (E.2 Member Buckling)	Ω =	1.65
		Fc_n /Ω =	6.44 ksi

Flexural Members

F.2 Yielding And Rupture

Nominal Flexural Strength For Yielding And Rupture	Limit	State of Yielding		
	[Z*Fcy]	Mnp =	272.66 k-in	
	[Mnp/Z]	Fb_n =	25.00 ksi	
		Ω =	1.65	
		$Fb_n/\Omega =$	15.15 ksi	
	Limit	State Of Rupture		
	[Z*Ftu/kt]	Mnu =	327.19 k-in	
	[Mnu/Z]	Fb_n =	30.00 ksi	
		Ω =	1.95	
		Fb_n /Ω =	15.38 ksi	
F.4 Lateral-Torsional Buckling				
Square Or Rectangular Tubes Subject To Lateral-To	rsional Buckling	q		
Slenderness For Shapes Symmetric Abou	It The Bending	Axis, λ F.4.2.1 =	15.14	
Slenderness	For Closed Sha	apes, λ F.4.2.3 =	13.61	
Slendern	ess For Any Sł	hape, λ F.4.2.5 =	15.14	
Μ	aximum Slende	erness, λ(max) =	15.14	< Cc
Nominal Flexural Strength - Lateral-Torsional Bucklin	Ig			
[Mnp(1-(λ/Cc))+(π²*E*λ*	Sx/Cc^3)]	Mnmb =	245.53 k-in	
[/	Mnmb/Sx]	Fb_n =	30.13 ksi	
		Ω =	1.65	
		$Fb_n/\Omega =$	18.26 ksi	

Work Prepared For: StruXure Outdoor of Washington

Project: 22-52551 - Shane McArthur

Calculations For: Beam #1, Single 2"x8"x 0.25"/0.25" 6063-T6 Aluminum Tube - Louver Beam

Uniform Compression Elements

B.5.4.2 Flat Elements Supported On Both Edges - Web & Flange

Uniform Compression Strength, Flat Elements Supported On Both Edges

Lower Slenderness Limit, $\lambda 1 =$			22.8	
U	oper Slenderr	ness Limit, λ2 =	39.2	
	Flange Slen	derness, b/tb =	6.0	≤ λ1
	Web Slen	derness, h/th =	30.0	λ1 - λ2
	[Fcy]	Fc_n1 =	25.00 ksi	
		Ω =	1.65	
		Fc_n1 /Ω =	15.15 ksi	
[Bp-1.6*D	p*h/th]	Fc_n2 =	22.99 ksi	
		Ω =	1.65	
		Fc_n2 /Ω =	13.93 ksi	

Flexural Compression Elements

B.5.5.1 Flat Elements Supported On Both Edges - Web

Flexural Compression Strength, Flat Elements Su	pported On Both E	dges		
	Lower Slender	ness Limit, λ1 =	34.73	
	Upper Slender	ness Limit, λ2 =	92.95	
	Slenderness, h/th =		30.00	≤ λ1
	[1.5*Fcy]	Fb_n =	37.50 ksi	
		Ω =	1.65	
		$Fb_n/\Omega =$	22.73 ksi	
Shear				
G.2 Shear Supported On Both Edges - Web				
Members With Flat Elements	Lower Slender	ness Limit, λ1 =	38.73	
Supported On Both Edges	Upper Slender	ness Limit, λ2 =	75.65	
	Sler	nderness, h/th =	30.00	≤ λ1
	[Fsy]	Fv_n =	15.00 ksi	
		Ω =	1.65	
		Fv_n /Ω =	9.09 ksi	

CALCULATED ALLOWABLE STRESSES

Allowable Bending Stress, F_{b} =	15.15 ksi
Allowable Axial Stress, Compression, F_{ac} =	6.44 ksi
Allowable Shear Stress; Webs, F_v =	9.09 ksi

Elastic Buckling Stress, Fe = 6.41 ksi

Weighted Average Allowable Compressive Stress (Per Section E.3.1), Fao = 14.14 ksi

 Work Prepared For:
 StruXure Outdoor of Washington

 Project:
 22-52551 - Shane McArthur

 Calculations For:
 Beam #1, Single 2"x8"x 0.25"/0.25" 6063-T6 Aluminum Tube - Louver Beam

 Member Loading & Capacity Calculation
 Dimensions & Loading Inputs

Layout Style = Layout #1 Beam #1 - Louver Beam Beam Use = MWF Beam Total Length, L = 19.50 ft # Spans = 1 Max Beam Span (Between Supports), Span = 19.50 ft Beam Overhang Left, OhL = 0.00 ft Beam Overhang Right, OhR = 0.00 ft Beam Location = Edge Point Load At Left Overhang, PohL = 0 lb Point Load At Right Overhang, PohR = 0 lb Point Load #1 (Left) On Span, P1 = 0 lb Point Load #1 Offset, a = 0.00 ft Point Load #2 (Right) On Span, P2 = 0.0 lb Point Load #2 Offset, b = 0.00 ft Resultant Weight Loading On Tributary, RL = 38.9 psf Tributary Width. W = 5.00 ft Additional Beam Loading (Icing, Service, Ect), AL = 21.00 lb/ft Linear Loading On Beam, w = 215.2 lb/ft Shear In Member And Compression / Tension Reactions At Supports Max Reaction From Span Point Loads, Vsp = 0 lb Left Reaction From Overhang Point Loads, VopL = 0 lb Right Reaction Right Overhang Point Loads, VopR = 0 lb Max Reaction From Span Weight, Vsw= 2099 lb Reaction From Weight Adjustment Factor For Multi-Span, Vwaf = 1 Adjusted Reaction From Span Weight, Vsw'= 2099 lb Left Reaction From Overhang Weight, VowL= 0 lb Right Reaction From Overhang Weight, VowR= 0 lb Max Tension At Supports, Tmax = 0.00 Kip Max Compression At Supports, Cmax = 2.10 Kip **Bending Moment Calculations** Moment From Span Point Loads, Msp = 0 lb-ft Moment From Point Loads Adjustment Factor For Multi-Span, Mpaf = 1.000 Adjusted Moment From Span Point Loads, Msp' = 0 lb-ft Moment From Left Overhang Point Loads, MohpL = 0 lb-ft Moment From Right Overhang Point Loads, MohpR = 0 lb-ft Moment From Span Weight, Mw= 10231 lb-ft Moment From Weight Adjustment Factor For Multi-Span, Mwaf = 1.00 Adjusted Moment From Span Weight, Mw'= 10231 lb-ft Moment From Left Overhang Weight, MohwL = 0 lb-ft Moment From Right Overhang Weight, MohwR = 0 lb-ft Total Max Moment Along Span, Mmaxspan = 10.2 Kip-ft Total Max Moment At Supports, Mmaxsup = 0.0 Kip-ft

Absolute Max Moment On Beam, Mmax = 10.2 Kip-ft

Work Prepared For: Project:	StruXure Outdoor of Wa 22-52551 - Shane McArt			
Calculations For:		c 0.25''/0.25'' 6063-T6 Aluminum	Tube - Louver	Beam
Deflection Calculations				200
	Deflection From	n Span Point Loads At x, ∆spx =	0.00 in	
Lo		om Weight Between Spans, x =	9.75 in	
		rhang Point Loads At x, Δopx =	0.00 in	
		Overhangs Weight At x, Δwx =	2.13 in	
		At Left Overhang End, ΔowL =	0.00 in	
		t Right Overhang End, $\Delta opR =$	0.00 in	
		At Left Overhang End, ΔowL =	0.00 in	
	Weight Deflection A	t Right Overhang End, ΔopR =	0.00 in	
	_	Span Max Deflection, Δsp =	2.13 in	
	0	verhang Max Deflection, Δoh =	0.00 in	
	-	Fotal Max Deflection, Δmax =	2.13 in	
	Note: Nega	tive Deflection Values Indicate Up	ward Deflection	
Member Capacity Equati <u>Bending Stress</u>				
	•	ent Developed In Member, Mz =	10.2 Kip-ft	
		ess Developed In Member, fb =	15.06 ksi	
Allowable Be	ending Stress Of Member,	Allowable Bending Stress, Fb =	15.15 ksi	
		Bending Moment Capacity =	99%	< 100%
<u>Axial Stress</u>				
		oad Developed In Member, Fx =	0.00 Kip	
		ess Developed In Member, fa =	0.00 ksi	
	Allowable A	kial Stress, Compression, Fac =	6.44 ksi	
		Axial Stress Capacity =	0%	< 100%
<u>Shear Stress</u>				
		bad Developed In Member, Vz =	2.10 Kip	
		ress Developed In Member, fv =	0.56 ksi	
	Allowable Shear	Stress Of Member Webs, Fv =	9.09 ksi	
		Shear Capacity =	6%	< 100%
Interaction Equations	a And Shoor Interaction	$\sqrt{[(fb/Eb)^2]} + (f_0/E_0)^2$	100%	< 100%
	ng And Shear Interaction And Bending Interaction	√ [(fb/Fb)^2 + (fv/Fv)^2] = fa/Fa + fb/Fb =	0%	< 100% < 100%
	ding And Shear Interaction	$fa/Fa + fb/Fb = fa/Fa + (fb/Fb)^2 + (fv/Fv)^2 = fa/Fa + (fb/Fb)^2 + (fb/Fb)^2 + (fb/Fb)^2 + (fb/Fb)^2 + (fb/Fb)^2 = fa/Fa + (fb/Fb)^2 + (fb/$	0%	< 100% < 100%
Axial Will Reduced Dell	ung Anu Shear Interaction	ia/i a + (ib/Fb) 2 + (iv/Fv) 2 -	0 /0	< 100 <i>%</i>

Capacity Less than 100% - OK, Member Is Sufficient For Applied Loading

Deflection Check

Deflection Limit =	L / 80	
Allowable Deflection, △Allow =	2.93 in	
Maximum Deflection, Δ Max =	2.13 in	
Deflection Capacity =	73%	< 100%
OK, Allowable Defle		

Work Prepared For:StruXure Outdoor of WashingtonProject:22-52551 - Shane McArthurCalculations For:Beam #2, Single 2"x8"x 0.25"/0.25" 6063-T6 Aluminum Tube - Main Beam

ALUMINUM DESIGN MANUAL (2015 EDITION)

Specifications for Aluminum Structures (Buildings)

Allowable Stress Design

Design Check of Standard Single 2"x8"x 0.25"/0.25" 6063-T6 Aluminum Tube

Per 2015 Aluminum Design Manua

Critically Alloy: 6063 Temper: T6 Welded: N

Member Properties

Single 2"x8"x 0.25"/0.25" 6063-T6 Aluminum Tube

← 2.000" → Base Width, b = 2.000	
Base Thickness, tb = 0.250	
0.250" Web Height, h = 8.000	
Web Thickness, th = 0.250	
Moment of Inertia About Axis To Base, Ix = 32.599 i	า^4
ج Moment of Inertia About Axis To Web, Iy = 3.224 ir	^4
x — — — — — — — — — — — — — — — — — — —	^4
Radius Of Gyration About Axis To Base, rx = 2.62 ii	n
Radius Of Gyration About Axis To Web, ry = 0.82 in Constant L = 9.68 in	٦
Ö Torsional Constant, J = 9.68 in	^ 4
Cross Sectional Area, A = 4.75 in	^2
Plastic Section Modulis, Z = 10.91 ir	^3
Warping Constant, Cw = 0.00 in	^6
Member Spans	
Unsupported Length (Max Span Between Supports), L = 10.0 f	t
Unbraced Length For Bending (Against Side-Sway), Lb = 10.0 f	t
Effective Length Factor, k = 1.0	
Material Properties	
Tensile Ultimate Strength, Ftu = 30 ks	i
Tensile Yield Strength, Fty = 25 ks	-
Compressive Yield Strength, Fcy = 25 ks	
Shear Ultimate Strength, Fsu = 18 ks	
Shear Yield Strength, Fsy = 15 ks	
Compressive Modulus Of Elasticity, $E = 10,100$	

Work Prepared For: Project:	StruXure Outdoor of Washington 22-52551 - Shane McArthur	
Calculations For:	Beam #2, Single 2"x8"x 0.25"/0.25" 6063-T6 Aluminun	n Tube - Main Beam
Buckling Constants		
C	ompression In Columns & Beam Flanges (Intercept), Bc =	27.64 ksi
	Compression In Columns & Beam Flanges (Slope), Dc =	0.14 ksi
Com	pression In Columns & Beam Flanges (Intersection), Cc =	78.38 ksi
	Compression In Flat Plates (Intercept), Bp =	31.39 ksi
	Compression In Flat Plates (Slope), Dp =	0.17 ksi
	Compression In Flat Plates (Intersection), Cp =	73.55 ksi
Compressive B	ending Stress In Solid Rectangular Bars (Intercept), Bbr =	46.12 ksi
Compressive	e Bending Stress In Solid Rectangular Bars (Slope), Dbr =	0.38 ksi
	Shear Stress In Flat Plates (Intercept), Bs =	18.98 ksi
	Shear Stress In Flat Plates (Slope), Ds =	0.08 ksi
	Shear Stress In Flat Plates (Intersection), Cs =	94.57 ksi
Ultimate	Strength Coefficient Of Flat Plates In Compression, k1c =	0.35
Ultimate	Strength Coefficient Of Flat Plates In Compression, k2c =	2.27
Ultir	mate Strength Coefficient Of Flat Plates In Bending, k1b =	0.50
Ultir	mate Strength Coefficient Of Flat Plates In Bending, k2b =	2.04
	Tension Coefficient, kt =	1.0

Member Strength Calculations

D.2 Axial Tension

Tensile Yielding - Unwelded Members	Fty_n =	25.00 ksi
	Ω =	1.65
	Fty_n /Ω =	15.15 ksi
Tensile Rupture - Unwelded Members	Ftu_n =	30.00 ksi
	Ω =	1.95
	Ftu_n /Ωt =	15.38 ksi

Axial Compression Members

E.2 Compression Member Buckling

Axial, Gross Section Subject To Buckling

Lower Slendern	ess Limit, λ1 =	18.23	
Upper Slenderness Limit, $\lambda 2$ =		78.38	
Slenderness, $\lambda(max) =$		145.66	≥ λ2
$[0.85\pi^{2}E/\lambda^{2}]$ Fc_n =		3.99 ksi	
	Ω =	1.65	
	Fc_n /Ω =	2.42 ksi	

Work Prepared For:StruXure Outdoor of WashingtonProject:22-52551 - Shane McArthurCalculations For:Beam #2, Single 2"x8"x 0.25"/0.25" 6063-T6 Aluminum Tube - Main Beam

E.3 Local Buckling

For Column Elements In Uniform Compression Subject To Local Buckling, The Uniform Compressive Strength Is B.5.4.2 - Flat Elements Supported On Both Edges (Base) B.5.4.2 - Flat Elements Supported On Both Edges (Web)

E.4 Buckling Interaction Per Table B.5.1

ole B.5.1	[π²*E/ (1.6*b/tb)²]	Fe(flange) =	1081.63 ksi
	[Fc_n]	Fc_n =	3.99 ksi
	Fe(flange) > Fc_n (E.2 Member Buckling)	Ω =	1.65
		Fc_n /Ω =	2.42 ksi
	[π²*E/ (1.6*h/th)²]	Fe(web) =	43.27 ksi
	[Fc_n]	Fc_n =	3.99 ksi
	Fe(web) > Fc_n (E.2 Member Buckling)	Ω =	1.65
		Fc_n /Ω =	2.42 ksi

Flexural Members

F.2 Yielding And Rupture

Nominal Flexural Strength For Yielding And Rupture	Limit	State of Yielding		
	[Z*Fcy]	Mnp =	272.66 k-in	
	[Mnp/Z]	Fb_n =	25.00 ksi	
		Ω =	1.65	
		Fb_n /Ω =	15.15 ksi	
	Limit S	State Of Rupture		
	[Z*Ftu/kt]	Mnu =	327.19 k-in	
	[Mnu/Z]	Fb_n =	30.00 ksi	
		Ω =	1.95	
		Fb_n/ Ω =	15.38 ksi	
		_		
F.4 Lateral-Torsional Buckling				
Square Or Rectangular Tubes Subject To Lateral-To	rsional Buckling	1		
Slenderness For Shapes Symmetric Abou	It The Bending	, Axis, λ F.4.2.1 =	30.71	
Slenderness	For Closed Sha	apes, λ F.4.2.3 =	30.43	
Slenderr	ess For Any Sh	ape, λ F.4.2.5 =	30.71	
Μ	aximum Slende	erness, λ(max) =	30.71	< Cc
Nominal Flexural Strength - Lateral-Torsional Bucklir	ng			
[Mnp(1-(λ/Cc))+(π²*Ε*λ*	Sx/Cc^3)]	Mnmb =	217.63 k-in	
Ι	Mnmb/Sx]	Fb_n =	26.70 ksi	
		Ω =	1.65	
		Fb_n /Ω =	16.18 ksi	

Work Prepared For: StruXure Outdoor of Washington

Project: 22-52551 - Shane McArthur

Calculations For: Beam #2, Single 2"x8"x 0.25"/0.25" 6063-T6 Aluminum Tube - Main Beam

Uniform Compression Elements

B.5.4.2 Flat Elements Supported On Both Edges - Web & Flange

Uniform Compression Strength, Flat Elements Supported On Both Edges

	5		
Lower S	lenderness Limit, λ1 =	22.8	
Upper S	lenderness Limit, λ2 =	39.2	
Flang	ge Slenderness, b/tb =	6.0	≤ λ1
We	eb Slenderness, h/th =	30.0	λ1 - λ2
[Fcy]	Fc_n1 =	25.00 ksi	
	Ω =	1.65	
	$Fc_n1/\Omega =$	15.15 ksi	
[Bp-1.6*Dp*h/th]		22.99 ksi	
	Ω =	1.65	
	Fc_n2 /Ω =	13.93 ksi	

Flexural Compression Elements

B.5.5.1 Flat Elements Supported On Both Edges - Web

Flexural Compression Strength, Flat Elements Supp	ported On Both	Edges		
	Lower Slende	erness Limit, λ1 =	34.73	
	Upper Slende	erness Limit, λ2 =	92.95	
	SI	enderness, h/th =	30.00	≤λ1
	[1.5*Fcy]	Fb_n =	37.50 ksi	
		Ω =	1.65	
		$Fb_n/\Omega =$	22.73 ksi	
Shear				
G.2 Shear Supported On Both Edges - Web				
Members With Flat Elements	Lower Slende	erness Limit, λ1 =	38.73	
Supported On Both Edges	Upper Slende	erness Limit, λ2 =	75.65	
	SI	enderness, h/th =	30.00	≤ λ1
	[Fsy]	Fv_n =	15.00 ksi	
		Ω =	1.65	
		Fv_n/ Ω =	9.09 ksi	

CALCULATED ALLOWABLE STRESSES

Allowable Bending Stress, F_{b} =	15.15 ksi
Allowable Axial Stress, Compression, F_{ac} =	2.42 ksi
Allowable Shear Stress; Webs, F_v =	9.09 ksi

Elastic Buckling Stress, Fe = 2.41 ksi

Weighted Average Allowable Compressive Stress (Per Section E.3.1), Fao = 14.14 ksi

 Work Prepared For:
 StruXure Outdoor of Washington

 Project:
 22-52551 - Shane McArthur

 Calculations For:
 Beam #2, Single 2"x8"x 0.25"/0.25" 6063-T6 Aluminum Tube - Main Beam

 Member Loading & Capacity Calculation
 Dimensione 2 L coding languate

Dimensions & Loading Inputs

	Layout # 1
Layout Style =	-
Beam #2 - Unioa	
Beam Use =	MWF
Beam Total Length, L =	10.00 ft
# Spans =	2
Max Beam Span (Between Supports), Span =	10.00 ft
Beam Overhang Left, OhL =	0.00 ft
Beam Overhang Right, OhR =	0.00 ft
Beam Location =	Edge
Point Load At Left Overhang, PohL =	2099 lb
-	
Point Load At Right Overhang, PohR =	2099 lb
Point Load #1 (Left) On Span, P1 =	0 lb
Point Load #1 Offset, a =	0.00 ft
Point Load #2 (Right) On Span, P2 =	0.0 lb
Point Load #2 Offset, b =	0.00 ft
Resultant Weight Loading On Tributary, RL =	0.0 psf
Tributary Width, W =	0.00 ft
Additional Beam Loading (Icing, Service, Ect), AL =	10.01 lb/ft
Linear Loading On Beam, w =	10.0 lb/ft
Shear In Member And Compression / Tension Reactions At Supports	
Max Reaction From Span Point Loads, Vsp =	0 lb
Left Reaction From Overhang Point Loads, VopL =	2099 lb
Right Reaction Right Overhang Point Loads, VopE =	2099 lb
Max Reaction From Span Weight, Vsw=	50 lb
Reaction From Weight Adjustment Factor For Multi-Span, Vwaf =	1.25
Adjusted Reaction From Span Weight, Vsw'=	63 lb
Left Reaction From Overhang Weight, VowL=	0 lb
Right Reaction From Overhang Weight, VowR=	0 lb
Max Tension At Supports, Tmax =	0.00 Kip
Max Compression At Supports, Cmax =	2.16 Kip
Bending Moment Calculations	
Moment From Span Point Loads, Msp =	0 lb-ft
Moment From Point Loads Adjustment Factor For Multi-Span, Mpaf =	1.156
Adjusted Moment From Span Point Loads, Msp' =	0 lb-ft
Moment From Left Overhang Point Loads, MohpL =	0 lb-ft
Moment From Right Overhang Point Loads, Mohpe =	0 lb-ft
Moment From Span Weight, Mw=	125 lb-ft
Moment From Weight Adjustment Factor For Multi-Span, Mwaf =	1.07
Adjusted Moment From Span Weight, Mw'=	134 lb-ft
Moment From Left Overhang Weight, MohwL =	0 lb-ft
Moment From Right Overhang Weight, MohwR =	0 lb-ft
Total Max Moment Along Span, Mmaxspan =	0.1 Kip-ft
Total Max Moment At Supports, Mmaxsup =	0.0 Kip-ft
Absolute Max Moment On Beam, Mmax =	0.1 Kip-ft
	-

Work Prepared For: Project:	StruXure Outdoor of Wa 22-52551 - Shane McArt			
Calculations For:		x 0.25"/0.25" 6063-T6 Aluminum	Tubo - Main B	oam
Deflection Calculations		(0.20 /0.20 0000-10 Aluminum		cam
Deflection Calculations	Deflection From	n Span Point Loads At x, ∆spx =	0.00 in	
		om Weight Between Spans, x =	5.00 in	
E		rhang Point Loads At x, Δopx =	0.00 in	
		Overhangs Weight At x, $\Delta wx =$	0.01 in	
		At Left Overhang End, $\Delta owL =$	0.00 in	
		At Right Overhang End, $\Delta opR =$	0.00 in	
		At Left Overhang End, $\Delta owL =$	0.00 in	
		At Right Overhang End, $\Delta opR =$	0.00 in	
	Weight Deflection P	Span Max Deflection, $\Delta sp =$	0.01 in	
	0	verhang Max Deflection, $\Delta oh =$	0.00 in	
		Total Max Deflection, Δmax =	0.01 in	
		tive Deflection Values Indicate Up		,
	noto, noga			
Member Capacity Equati	ons			
Bending Stress				
	Bending Mome	ent Developed In Member, Mz =	0.1 Kip-ft	
	5	ess Developed In Member, fb =	0.20 ksi	
Allowable Be	ending Stress Of Member,	Allowable Bending Stress, Fb =	15.15 ksi	
		Bending Moment Capacity =	1%	< 100%
Axial Stress		3 1 3		
	Axial Lo	oad Developed In Member, Fx =	0.00 Kip	
	Axial Str	ess Developed In Member, fa =	0.00 ksi	
	Allowable A	xial Stress, Compression, Fac =	2.42 ksi	
		Axial Stress Capacity =	0%	< 100%
<u>Shear Stress</u>				
	Shear Lo	oad Developed In Member, Vz =	2.16 Kip	
	Shear Sti	ress Developed In Member, fv =	0.58 ksi	
	Allowable Shear	Stress Of Member Webs, Fv =	9.09 ksi	
		Shear Capacity =	6%	< 100%
Interaction Equations		-		
Reduced Bendir	ng And Shear Interaction	√ [(fb/Fb)^2 + (fv/Fv)^2] =	6%	< 100%
Axial	And Bending Interaction	fa/Fa + fb/Fb =	0%	< 100%
Axial With Reduced Ben	ding And Shear Interaction	fa/Fa + (fb/Fb)^2 + (fv/Fv)^2 =	0%	< 100%

Capacity Less than 100% - OK, Member Is Sufficient For Applied Loading

Deflection Check

Deflection Limit =	L / 80		
Allowable Deflection, Δ Allow =	1.50 in		
Maximum Deflection, ∆Max =	0.01 in		
Deflection Capacity =	0%	< 100%	
OK, Allowable Deflection Sufficient			

Work Prepared For:StruXure Outdoor of WashingtonProject:22-52551 - Shane McArthurCalculations For:Post #1, Single 8" x 8" x 0.1875" / 0.1875" 6063-T6 Aluminum Tube - Post

ALUMINUM DESIGN MANUAL (2015 EDITION)

Specifications for Aluminum Structures (Buildings)

Allowable Stress Design

Design Check of Standard Single 8"x8"x 0.1875"/0.1875" 6063-T6 Aluminum Tube As Post Per 2015 Aluminum Design Manua

> Critically Alloy: 6063 Temper: T6 Welded: N

Member Properties	Single 8" x 8" x 0.1875" / 0.1875" 6063-T6	Aluminum Tube
-	# of Parallel Beams in Section # Beams =	1
•	- Base Width, b =	8.000"
· • • • • • • • • • • • • • • • • • • •	Base Thickness, tb =	0.188"
0.188"	Web Height, h =	8.000"
0.100	Web Thickness, th =	0.188"
	Moment of Inertia About Axis To Base, Ix =	59.639 in^4
	Moment of Inertia About Axis To Web, Iy =	59.639 in^4
x	$\begin{array}{c} \hline \\ \hline $	14.910 in^4
	• $\vec{\omega}$ Radius Of Gyration About Axis To Base, rx =	3.19 in
0.188'	Radius Of Gyration About Axis To Web, ry =	3.19 in
o .	Torsional Constant, J =	89.41 in^4
	Cross Sectional Area, A =	5.86 in^2
	Plastic Section Modulis, Z =	17.17 in^3
	Warping Constant, Cw =	0.00 in^6
Member Spans		
•	Unsupported Length (Max Span Between Supports), L =	11.0 ft
	Unbraced Length For Bending (Against X-Side-Sway), Lbx =	11.0 ft
	Unbraced Length For Bending (Against Y-Side-Sway), Lby =	11.0 ft
	Effective Length Factor (X Direction), kx =	2.0
	Effective Length Factor (Y Direction), ky =	1.0
Matarial Descention		
Material Properties	Tensile Ultimate Strength, Ftu =	30 ksi
	Tensile Yield Strength, Fty =	25 ksi
	Compressive Yield Strength, Fcy =	25 ksi
	Shear Ultimate Strength, Fsu =	25 ksi 18 ksi
	Shear Yield Strength, Fsu =	15 ksi
	Compressive Modulus Of Elasticity, E =	10,100 ksi
	Compressive woulds Of Elasticity, E -	10,100 KSI

Work Prepared For: Project:		
Calculations For:	Post #1, Single 8" x 8" x 0.1875" / 0.1875" 6063-T6 Alu	iminum Tube - Post
Buckling Constants		
C	ompression In Columns & Beam Flanges (Intercept), Bc =	27.64 ksi
	Compression In Columns & Beam Flanges (Slope), Dc =	0.14 ksi
Com	pression In Columns & Beam Flanges (Intersection), Cc =	78.38 ksi
	Compression In Flat Plates (Intercept), Bp =	31.39 ksi
	Compression In Flat Plates (Slope), Dp =	0.17 ksi
	Compression In Flat Plates (Intersection), Cp =	73.55 ksi
Compressive B	ending Stress In Solid Rectangular Bars (Intercept), Bbr =	46.12 ksi
Compressive	e Bending Stress In Solid Rectangular Bars (Slope), Dbr =	0.38 ksi
	Shear Stress In Flat Plates (Intercept), Bs =	18.98 ksi
	Shear Stress In Flat Plates (Slope), Ds =	0.08 ksi
	Shear Stress In Flat Plates (Intersection), Cs =	94.57 ksi
Ultimate	Strength Coefficient Of Flat Plates In Compression, k1c =	0.35
Ultimate	Strength Coefficient Of Flat Plates In Compression, k2c =	2.27
Ultir	mate Strength Coefficient Of Flat Plates In Bending, k1b =	0.50
	mate Strength Coefficient Of Flat Plates In Bending, k2b =	2.04
	Tension Coefficient, kt =	1.0
	· · · · · · · · · · · · · · · · · · ·	

Member Strength Calculations

D.2 Axial Tension

Tensile Yielding - Unwelded Members	Fty_n =	25.00 ksi
	Ω =	1.65
	Fty_n /Ω =	15.15 ksi
Tensile Rupture - Unwelded Members	Ftu_n =	30.00 ksi
	Ω =	1.95
	Ftu_n/Ωt =	15.38 ksi

Axial Compression Members

E.2 Compression Member Buckling

Axial, Gross Section Subject To Buckling

Lower Slenderness Limit, λ1 =		18.23	
Upper Slenderness Limit, λ2 =		78.38	
Slenderness, λ(max) =		82.75	≥ λ2
[0.85π²E/λ²]	Fc_n =	12.37 ksi	
	Ω=	1.65	
	Fc_n /Ω =	7.50 ksi	

Work Prepared For:	StruXure Outdoor of Washington
Project:	22-52551 - Shane McArthur
Calculations For:	Post #1, Single 8" x 8" x 0.1875" / 0.1875" 6063-T6 Aluminum Tube - Post

Calculations F E.3 Local Buckling

For Column Elements In Uniform Compression Subject To Local Buckling, The Uniform Compressive Strength Is B.5.4.2 - Flat Elements Supported On Both Edges (Base) B.5.4.2 - Flat Elements Supported On Both Edges (Web)

E.4 Buckling Interaction Per Table B.5.1

[π²*E/ (1.6*b/tb)²]	Fe(flange) =	23.55 ksi
[Fc_n]	Fc_n =	12.37 ksi
Fe(flange) > Fc_n (E.2 Member Buckling)	Ω =	1.65
	Fc_n /Ω =	7.50 ksi
[π²*E/ (1.6*h/th)²]	Fe(web) =	23.55 ksi
[Fc_n]	Fc_n =	12.37 ksi
Fe(web) > Fc_n (E.2 Member Buckling)	Ω =	1.65
	Fc_n /Ω =	7.50 ksi
	[Fc_n] Fe(flange) > Fc_n (E.2 Member Buckling) [π ^{2*} E/ (1.6*h/th) ²] [Fc_n]	$[Fc_n] \qquad Fc_n = \\ [Fc]n] \qquad \Gamma = \\ Fe(flange) > Fc_n (E.2 Member Buckling) \qquad \Omega = \\ Fc_n/\Omega = \\ [\pi^{2*}E/(1.6*h/th)^2] \qquad Fe(web) = \\ [Fc_n] \qquad Fc_n = \\ Fe(web) > Fc_n (E.2 Member Buckling) \qquad \Omega = \\ \end{bmatrix}$

Flexural Members

F.2 Yielding And Rupture

Nominal Flexural Strength For Yielding And Rupture	Lim	it State of Yielding		
	[Z*Fcy]	Mnp =	429.24 k-in	
	[Mnp/Z]	Fb_n =	25.00 ksi	
		Ω =	1.65	
		Fb_n /Ω =	15.15 ksi	
	Limi	t State Of Rupture		
	[Z*Ftu/kt]	Mnu =	515.08 k-in	
	[Mnu/Z]	Fb_n =	30.00 ksi	
		Ω =	1.95	
		$Fb_n/\Omega =$	15.38 ksi	
F.4 Lateral-Torsional Buckling Square Or Rectangular Tubes Subject To Lateral-Tor	rsional Buckli	ng		
Slenderness For Shapes Symmetric Abou	t The Bendin	g Axis, λ F.4.2.1 =	12.14	
Slenderness	For Closed S	hapes, λ F.4.2.3 =	11.94	
Slendern	ess For Any	Shape, λ F.4.2.5 =	12.14	
Ma	aximum Slen	derness, λ(max) =	12.14	< Cc
Nominal Flexural Strength - Lateral-Torsional Bucklin	g			
[Mnp(1-(λ/Cc))+(π²*Ε*λ*	Sx/Cc^3)]	Mnmb =	400.23 k-in	
[/	/////Mnmb/Sx	Fb_n =	26.84 ksi	
		Ω =	1.65	
		Fb_n /Ω =	16.27 ksi	

Work Prepared For:	StruXure Outdoor of Washington
--------------------	--------------------------------

Project: 22-52551 - Shane McArthur

Calculations For: Post #1, Single 8" x 8" x 0.1875" / 0.1875" 6063-T6 Aluminum Tube - Post

Uniform Compression Elements

B.5.4.2 Flat Elements Supported On Both Edges - Web & Flange

Uniform Compression Strength, Flat Elements Supported On Both Edges

	Lagoo			
Lower Slenderness Limit, $\lambda 1 = 22.8$				
Upper Slende	erness Limit, λ2 =	39.2		
Flange Sl	enderness, b/tb =	40.67	≥ λ2	
Web SI	enderness, h/th =	40.67	≥λ2	
[k2c*√(Bp*E)/(1.6*b/tb)]	Fc_n1 =	19.64 ksi		
	Ω =	1.65		
	Fc_n1 /Ω =	11.90 ksi		
[k2c*√(Bp*E)/(1.6*h/th)]	Fc_n2 =	19.64 ksi		
	Ω =	1.65		
	Fc n2 /Ω =	11.90 ksi		

Flexural Compression Elements B.5.5.1 Flat Elements Supported On Both Edges - Web

Flexural Compression Strength, Flat Elements Supported On Both Edges

	l ower Slender	ness Limit, λ1 =	34.73	
		,		
	Upper Slender	ness Limit, λ2 =	92.95	
	Sle	nderness, h/th =	40.67	λ1 - λ2
	[Bbr-m*Dbr*h/th]	Fb_n =	36.03 ksi	
		Ω =	1.65	
		Fb_n /Ω =	21.83 ksi	
Shear				
G.2 Shear Supported On Both Edges -	Web			
Members With Flat Elements	Lower Slender	mess Limit, λ1 =	38.73	
Supported On Both Edges	Upper Slender	rness Limit, λ2 =	75.65	
	Sle	nderness, h/th =	40.67	λ1 - λ2
	[Bs-1.25Ds*h/th]	Fv_n =	14.80 ksi	
		Ω =	1.65	
		Fv_n /Ω =	8.97 ksi	

CALCULATED ALLOWABLE STRESSES

Allowable Bending Stress, F_b =	14.24 ksi
Allowable Axial Stress, Compression, F_{ac} =	7.50 ksi
Allowable Shear Stress; Webs, F_v =	8.97 ksi
Allowable Axial Stress, Tension, F _{at} =	15.15 ksi

Elastic Buckling Stress, Fe = 7.47 ksi

Weighted Average Allowable Compressive Stress (Per Section E.3.1), Fao = 11.90 ksi

Work Prepared For:StruXure Outdoor of Washington
Project:22-52551 - Shane McArthur
Calculations For:Post #1, Single 8" x 8" x 0.1875" / 0.1875" 6063-T6 Aluminum Tube - PostMember Loading & Capacity Calculation
Post Dimensions And GeometryPost #1, Single 8" x 8" x 0.1875" / 0.1875" / 0.1875" 6063-T6 Aluminum Tube - Post

Post Dimensions And Geometry	
Post Height, h	
Post Location	5
Post Trib Width in X-Axis (Projection), W _{Trib} ;	
Post Trib Length in Y-Axis (1 Projection), L _{Trib}	•
Total Tributary Roof Area, A _{ro}	of = 97.5 ft ²
Fascia Height, h _{fa}	_c = 0.67 ft
Wall Porosity, % _{Wa}	_{II} = 100%
Wall / Screen / Post Effective Tributary Width (X Direction), W_{Wall}	_x = 0.67 ft
Wall / Screen / Post Effective Tributary Length (Y Direction), W _{Wall}	_r = 0.67 ft
Lateral Support from Host	
Supported against Lateral Forces in X Direction	= TRUE
Supported against Lateral Forces in Y Direction	
Roof Acts as Shear Diaphragm	
Post Acting as (X Direction)	
Post Acting as (Y Direction)	= Cantilevered Column
Design Loading	- 00.05(
Design Gravity Loading (MWFRS), P _{Gra}	•
Design Uplift Loading (MWFRS), P _{Upli}	•
Lateral Loading (MWFRS), P _{Latera}	
Wind Force On Lateral Force System Per Post (X Direction	
Wind Force On Lateral Force System Per Post (Y Direction) = 560 lb
Local Seismic Loading (Acting on This Tributary Area)	
Local Tributary Weight, W	= 1148 lbs
Local Effective Seismic Design Force, Fp	
Redundancy Factor, p	
ASD Service Factor	= 0.70
Max Seismic Shear, V _{Sei}	_s = 537 lb
Max Seismic Moment, M _{Sei}	_s = 4134 lb-ft
Axial Force Calculations	
Compression Load From Gravity Loading On Tributary Area, Fo	c = 3788 lb
Tension Load From Uplift Loading On Tributary Area, F	_τ = -1316 lb
Max Compression Loading From Loaded Beams, F _{C Bean}	n = 2161 lb
Max Tensile Loading From Loaded Beams, F _{T Bean}	n = 0 lb
Maximum Compressive Loading, F _{xc}	
Maximum Tension Loading, F _x	
Note: Negative Loading Values Indica	•
Shear Force Calculations	
Lateral Shear (X Direction), V	_x = 73 lb
Lateral Shear (Y Direction), V	_r = 222 lb
Resultant Shear (Magnitude), V	
Maximum Design Shear, V _{ma}	
Max Torsion due to 5% Eccentric Shear, Tn	•
	•

Work Prepared For:	StruXure Outdoor of Wa			
Project:	22-52551 - Shane McArt		· · · · ·	Deet
Calculations For:	· •	x 0.1875" / 0.1875" 6063-T6 Alu	minum Tube -	Post
Bending Moment Calcula		(Bending Towards Host), My =	160 lb-ft	
ľ		ase) (Bending To Host), Mx =	1802 lb-ft	
X Moment	•	Host Attached Members, M _{X-Red}	15%	
X - Moment		x = 0 x - Bending Moment, Mx' =	1531 lb-ft	
		solute Max Moment, Mmax =	4.1 Kip-ft	
Deflection Calculations			4.1 Kip-it	
Beneetion Guiediations	1	Deflection in X - Direction, $\Delta x =$	0.00 in	
		Deflection in Y - Direction, $\Delta y =$	0.19 in	
		Max Deflection, $\Delta max =$	0.19 in	
		······, _····		
Member Capacity Equati	ons			
Bending Stress				
	Bending Mome	ent Developed In Member, Mz =	4.1 Kip-ft	
	5	ess Developed In Member, fb =	3.33 ksi	
Allowable Be	ending Stress Of Member,	Allowable Bending Stress, Fb =	14.24 ksi	
		Bending Moment Capacity =	23%	< 100%
Axial Stress				
Compressive Stress		ad Developed In Member, Fc =	3.79 Kip	
		ss Developed In Member, fac =	0.65 ksi	
		kial Stress, Compression, Fac =	7.50 ksi	< 100%
Tensile Stress	C	Compressive Stress Capacity =	9%	< 100%
Tensne Stress	Toppion L	ad Davalanad In Mambar E	4 22 Kin	
		bad Developed In Member, $F_T =$	-1.32 Kip	
		ss Developed In Member, fat = ble Axial Stress, Tension, Fat =	0.05 ksi 15.15 ksi	
	Allowa	Tensile Stress Capacity =	15.15 KSI 0%	< 100%
Shear Stress		Tensile Stress Capacity -	076	< 100%
Silear Stress	Shearlo	ad Developed In Member, Vz =	0.54 Kip	
		ess Developed In Member, v2 =	0.19 ksi	
		Stress Of Member Webs, Fv =	8.97 ksi	
		Shear Capacity =	2%	< 100%
Interaction Equations				
	ng And Shear Interaction	√ [(fb/Fb)^2 + (fv/Fv)^2] =	23%	< 100%
	And Bending Interaction	fa/Fa + fb/Fb =	32%	< 100%
Axial With Reduced Ben	ding And Shear Interaction	fa/Fa + (fb/Fb)^2 + (fv/Fv)^2 =	14%	< 100%

Capacity Less than 100% - OK, Member Is Sufficient For Applied Loading

Deflection Check

Deflection Limit =	L / 80	
Allowable Deflection, ∆Allow =	1.65 in	
Maximum Deflection, Δ Max =	0.19 in	
Deflection Capacity =	12%	< 100%
OK, Allowable Deflection Sufficient		

Work Prepared For: StruXure Outdoor of Washington Project: 22-52551 - Shane McArthur Calculations For: Loaded Beam To Perimeter Beam Screw Connection

Design Of Steel Spaced Thread Tapping Screw to Aluminum Connections

† = 2020 Aluminum Design Manual ; * = AMMA TIR-A9-2014

Anchor To Be Analyzed:	#12-14 SMS, 316 SS,	Steel Screws	
-	or Size Designation, Size =	#12-14 SMS	\sim
	Screw Material, (Alloy) =	316 SS	DEAM TO BEAM U-BRACKET
Anchor Ultim	ate Tensile Strength, Ftu =	100 ksi	BEAM TO U-BRACKET
	Anchor Yield Strength, Fy =	65 ksi	CONNECTION (SCREWS IN SHEAR)
Nor	minal Screw Diameter , D =	0.216"	
Bas	sic Minor Diameter, Dmin =	0.157"	U-BRACKET SIDE
	Tensile Stress Area, As =	0.019 in ²	U-BRACKET SIDE CONNECTION PERIMETER (CONNECTION DOES BEAM NOT CONTROL)
	Thread Root Area, Ar =	0.019 in ²	
	# Thread Per Inch, n =	14	ISO VIEW
Consider Washer?	Washer Diameter, Dw =	0.625"	BEAM TO U-BRACKET
And	chor Head Diameter, Dws =	0.415"	
No	ominal Hole Diameter, Dh =	0.216"	CONNECTION PLAN
Is anchor placed i	n a screw boss/chase/slot?	FALSE	
	Countersunk?	FALSE	
	ntersink depth, CS Depth =	0.000"	
Minimum Alur	ninum Edge Distance, de =	0.43"	
Member in Contact with Screw Hea	d:		
	Alloy & Temper 1 =	6063-T6	
Т	hickness of Member 1, t1 =	0.250"	
Tensile Ultimate St	rength of Member 1, Ftu1 =	30 ksi	
Tensile Yield St	rength of Member 1, Fty1 =	25 ksi	
Member not in Contact with Screw	Head:		
	Alloy & Temper 2 =	6063-T6	
Т	hickness of Member 2, t2 =	0.250"	
Depth of Full Threa	d Engagement Into t2, Le =	0.250"	
Tensile Ultimate St	rength of Member 2, Ftu2 =	30 ksi	
Tensile Yield St	rength of Member 2, Fty2 =	25 ksi	
Screw	/ Boss Wall Thickness, t3 =	0.125"	
Min Depth of Full Thread Engage	ement Into Screw Boss, Le1 =	0.432"	
Angle Defining Limits of Screw Enga	agement, In Screw Chase, a =	86.75	

Ratio of Screw Boss Engaged Thread Area To Total Area, Re = 0.348

Work Prepared For:	StruXure Outdoor of Washington
Project:	22-52551 - Shane McArthur
Calculations For:	Loaded Beam To Perimeter Beam Screw Connection

Allowable Tension Calculation Coeff. Dependent On Screw Location, C = 1.0 († Sect. J.5.4.2) Coeff. Dependent On Member 2 Thickness, Ks = 1.2 († Sect. J.5.4.1.1b) Nominal Pull-Out Strength Of Screw, Rn t1 = 2494.8 lb († Sect. J.5.4.1.1b) Nominal Pull-Over Strength Of Screw, Rn t2 = 1492.5 lb († Sect. J.5.4.2) minal Pull-Out Strength From Screw Boss (if applicable), Rn t3 = N/A († Sect. J.5.4.1.2) Allowable Pull-Out Strength From Screw Boss, Rn t4 = (* Sect. 14.0)) N/A Allowable Tensile Capacity Of Screw, Pnt = (* Eqn. 10.4-10.7) 645.3 lb Safety Factor For Connections; Building Type Structures, $\Omega =$ 3.0 Safety Factor For Anchor, Ω = 3.0 Allowable Tension = 498 lb Allowable Shear Calculation Bearing On Member 1, Rn v1 = († Sect. J.5.5.1) 3240.0 lb Bearing On Member 2, Rn v2 = 3240.0 lb († Sect. J.5.5.1) Screw Tilting, Rn v3 = 7319.9 lb († Sect. J.5.5.2) Shear Capacity Of Screw Boss Wall, Rn v4 = N/A Allowable Shear Capacity Of Screw, Pnv = 372.6 lb (* Eqn. 7.5) Safety Factor For Connections; Building Type Structures, $\Omega =$ 3.0 Safety Factor For Anchor, $\Omega =$ 3.0 Allowable Shear = 373 lb

Design Omissions:

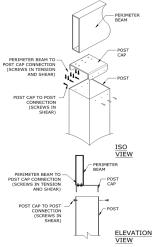
Disregard The Limiting Allowable Capacities From Member 1 (Member In Contact With Screw Head) Disregard The Limiting Allowable Capacities From Member 2 (Member In Not In Contact With Screw Head)

Connection Total Strength & Capacity Calculations

Anchor Qty at Connection, Qty = Required Tensile Loading on Connection, Treq = Required Shear Loading on Connection, Vreq = Interaction Exponent factor, n =	6 0 lb 2099 lb 1.00	(Beam To Beam Connection Not Loaded in Tension)
Tensile capacity of connection, Tcap = Shear capacity of connection , Vcap =	2985 lb 2235 lb	(Anchor Qty* Allowable Tension) (Anchor Qty* Allowable Shear)
$\frac{R_Z}{T_{CAP}} + \frac{R_X}{V_{CAP}} =$	94%	Maximum Capacity = 100%

Capacity < 100% OK! - Connection Design Is Sufficient

 \square



Work Prepared For:	StruXure Outdoor of Washington
Project:	22-52551 - Shane McArthur
Calculations For:	Perimeter Beam To Post Screw Connection

Design Of Steel Spaced Thread Tapping Screw to Aluminum Connections

† = 2020 Aluminum Design Manual ; * = AMMA TIR-A9-2014

Anchor To Be Analyzed:	#12-14 SMS, 316 SS,	Steel Screws	
Nominal Ar	nchor Size Designation, Size =	#12-14 SMS	
	Screw Material, (Alloy) =	316 SS	
Anchor U	ltimate Tensile Strength, Ftu =	100 ksi	PERI POST G
	Anchor Yield Strength, Fy =	65 ksi	(SCRE
	Nominal Screw Diameter , D =	0.216"	PO
	Basic Minor Diameter, Dmin =	0.157"	FO.
	Tensile Stress Area, As =	0.019 in ²	
	Thread Root Area, Ar =	0.019 in²	
	# Thread Per Inch, n =	14	
Consid	er Washer?asher Diameter, Dw =	0.625"	PE POST (SC
/	Anchor Head Diameter, Dws =	0.415"	(SC
	Nominal Hole Diameter, Dh =	0.216"	1
Is anchor place	ed in a screw boss/chase/slot?	FALSE	
	Countersunk?	FALSE	
C	Countersink depth, CS Depth =	0.000"	
Minimum A	luminum Edge Distance, de =	0.43"	

Member in Contact with Screw Head:

Alloy & Temper 1 =	6063-T6
Thickness of Member 1, t1 =	0.250"
Tensile Ultimate Strength of Member 1, Ftu1 =	30 ksi
Tensile Yield Strength of Member 1, Fty1 =	25 ksi

Member not in Contact with Screw Head:

Alloy & Temper 2 =	6063-T6
Thickness of Member 2, t2 =	0.188"
Depth of Full Thread Engagement Into t2, Le =	0.188"
Tensile Ultimate Strength of Member 2, Ftu2 =	30 ksi
Tensile Yield Strength of Member 2, Fty2 =	25 ksi
Screw Boss Wall Thickness, t3 =	0.125"
Min Depth of Full Thread Engagement Into Screw Boss, Le1 =	0.432"
Angle Defining Limits of Screw Engagement, In Screw Chase, a =	86.75
Ratio of Screw Boss Engaged Thread Area To Total Area, Re =	0.348

Work Prepared For:	StruXure Outdoor of Washington
Project:	22-52551 - Shane McArthur
Calculations For:	Perimeter Beam To Post Screw Connection

Allowable Tension Calculation

Anowable rension outculation		
Coeff. Dependent On Screw Location, C =	1.0	(† Sect. J.5.4.2)
Coeff. Dependent On Member 2 Thickness, Ks =	1.2	(† Sect. J.5.4.1.1b)
Nominal Pull-Out Strength Of Screw, Rn_t1 =	1579.5 lb	(† Sect. J.5.4.1.1b)
Nominal Pull-Over Strength Of Screw , Rn_t2 =	1492.5 lb	(† Sect. J.5.4.2)
Nominal Pull-Out Strength From Screw Boss, Rn_t3 =	N/A	(† Sect. J.5.4.1.2)
Allowable Pull-Out Strength From Screw Boss, Rn_t4 =	N/A	(* Sect. 14.0))
Allowable Tensile Capacity Of Screw , Pnt =	645.3 lb	(* Eqn. 10.4-10.7)
Safety Factor For Connections; Building Type Structures, Ω =	3.0	
Safety Factor For Anchor, Ω =	3.0	
Allowable Tension =	498 lb	
Allowable Shear Calculation		
Bearing On Member 1, Rn_v1 =	3240.0 lb	(† Sect. J.5.5.1)
Bearing On Member 2 , Rn_v2 =	2430.0 lb	(† Sect. J.5.5.1)
Screw Tilting, Rn_v3 =	4754.4 lb	(† Sect. J.5.5.2)
Shear Capacity Of Screw Boss Wall, Rn_v4 =	N/A	
Shear Capacity Of Screw Boss Wall, Rn_v4 = Allowable Shear Capacity Of Screw, Pnv =	N/A 372.6 lb	(* Eqn. 7.5)
		(* Eqn. 7.5)
Allowable Shear Capacity Of Screw, Pnv =	372.6 lb	(* Eqn. 7.5)
Allowable Shear Capacity Of Screw, Pnv = Safety Factor For Connections; Building Type Structures, Ω =	372.6 lb 3.0	(* Eqn. 7.5)

Design Omissions:

Disregard The Limiting Allowable Capacities From Member 1 (Member In Contact With Screw Head) Disregard The Limiting Allowable Capacities From Member 2 (Member In Not In Contact With Screw Head)

Connection Total Strength & Capacity Calculations

<u>B</u>	<u>eam To Post Clip</u>	<u>Post Clip To Post</u>
Anchor Qty At Connection, Qty =	6	6
Required Tensile Loading On Connection, Treq =	1316 lb	0 lb
Required Shear Loading On Connection, Vreq =	537 lb	1316 lb
Interaction Exponent Factor, n =	1.00	1.00
Tensile Capacity Of Connection, Tcap =	2985 lb	2985 lb
Shear Capacity Of Connection , Vcap =	2235 lb	2235 lb
$\frac{R_Z}{T_{CAP}} + \frac{R_X}{V_{CAP}} =$	68%	59%

Capacity < 100% OK! - Connection Design Is Sufficient

Work Prepared For:	StruXure Outdoor of Washington
Project:	22-52551 - Shane McArthur
Calculations For:	Isolated Footer Calculations

Isolated Footing Design

Footing Dimensions

Isolated Footing	Width X =	36 in	Length Y =	36 in	Depth D = 30 in
Slab At Grade?	Trib Width =	0 in	Trib Length =	0 in	Thickness = 0 in

Required Reinforcement (4) #5 Each Way, Top & Bottom

(4) #5, Each Way, Top & Bottom		
<u>Check Resistance Against Uplift:</u> Concrete Unit Wt, γc = Concrete Footing Weight = Maximum Applied Uplift Load = Uplift Resistance Capcity = Uplift Required FS = Capacity < FS - OK! - Uplift Resistance	150 pcf 3,375 lbs 1,316 lbs 39% 100% ce Sufficient	
<u>Check Resistance Against Sliding:</u> Coef. of Base Friction, μ = Concrete Footing Weight = Static Friction Force = Maximum Applied Shear Load = Sliding Resistance Capacity = Capacity < FS - OK	0.35 3375.0 lb 1,181 lbs 537 lbs 45% ! - Sliding R	Sliding Required FS = 100% Resistance Sufficient
Check Resistance Against Overturning:		
Overturning Moment (X) =	4848 lb-ft	(From Applied Uplift, Shear, and Overturning Forces)
Overturning Resistance (X) =		(From Concrete Weight Acting At Footing Center)
Overturning Resistance Capacity (X) =	96%	OT (X) Required FS = 100%
Overturning Moment (Y) =	3476 lb-ft	(From Applied Uplift, Shear, and Overturning Forces)
Overturning Resistance $(Y) =$	5063 lb-ft	(From Concrete Weight Acting At Footing Center)
Overturning Resistance Capacity (Y) =	69%	OT (Y) Required FS = 100%
Capacity < FS - OK! -	Overturning	g Resistance Sufficient
Check Soil Bearing Capacity:	4500	
Min Soil Bearing Pressure = Frictional Resistance =	1500 psf	 * To Be Verified By Others If Greater Than 1500 psf * To Be Verified By Others If Greater Than 250 psf
	250 psf	To be verified by Others it Greater Than 250 psi
Maximum Bearing Capacity of Footing = Maximum Applied Gravity Loading =	2333 psf 3,788 lbs	
Maximum Applied Gravity Loading -	3,700 105	
Footing Pressure at Heel, q _{Heel} =	420 psf	$q_{heel} = \frac{P_{total}}{W \cdot L} - \frac{6M_x}{W^2 \cdot L} - \frac{6M_y}{L^2 \cdot W}$
Footing Pressure at Toe, q _{Toe} =	1172 psf	$q_{toe} = \frac{P_{total}}{W \cdot L} + \frac{6M_x}{W^2 \cdot L} + \frac{6M_y}{L^2 \cdot W}$
Bearing Pressure Capacity =	50%	Bearing Required FS = 100%

Bearing Pressure Capacity = 50% Bearing Required FS = 100% Capacity < FS - OK! - Soil Bearing Capacity Sufficient

Work Prepared For:	StruXure Outdoor of Washington
Project:	22-52551 - Shane McArthur
Calculations For:	Baseplate Capacity Calculations

Design Check Of A Fully Supported Aluminum - 6063-T6, 12" x 12" x 0.25" Baseplate For Bending And Punching Shear

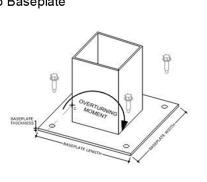
Member Properties

Plate Length, I =	12.0 in	BASEPLATE LENGTH
Plate Width, b =	12.0 in	GROUP CENTROID
Plate Thickness, tb =	0.250 in	ANCHOR SEPARTATION O DISTANCE
Moment of Inertia About Axis To Flange, Ix =	0.016 in^4	O SEPARTATION O DISTANCE
Section Modulus (About X-Axis), Sc =	0.125 in ³	
Baseplate Yield Stress, Fy=	15.0 ksi	LUTASSA
Applied Loading		• •
Maximum Tension Applied To Baseplate, P =	1,316 lbs	ANCHORS IN ANCHORS IN TENSION COMPRESSION
Maximum Moment Applied To Baseplate, M _{MAX} =	1.53 k-ft	
Check Plate Thickness for Bending		
Tension/Compression At Either Side Of Plate (Located At		
Anchorline), T1 =	2.0 kip	(= Mreq / Sep)
Resultant Loading On Baseplate Considering Triangular		
Load Distribution, $T_{Load} =$	4.6 kip	(= 1/2 x (Sep/2) x T1)
Moment At Plate Section From Post Centerline To Anchor		
Centerline (L = 0 in), Mplate =	2.7 kip-in	(= 2 * W * L / 9*√3)
Determine The Value Of m :	·	,
Plate Cantilever Dimension, m =	2.20 in	(= 0.5 (tb - 0.95 d))
Where The Depth of the Column Section, d =	8.00 in	
Determine Thickness Of Base Plate:		
λ =	1	
n' = d / 4 =	2.00 in	
Max Plate Cantilever Dimension, $c = MAX (m, \lambda n') =$	2.20 in	
Required Plate Thickness, tp =	0.100 in	(= 2* c* ([T1+ P/ 2]/ A1* Fy)* 0.5)
Plate Thickness OK!	- Bending Re	esistance Is Sufficient
	5	
Check Plate Thickness for Shear Punchout		

Check Plate Thickness for Shear Punchout Vertical Load On Plate Due To Moment At Either Side Of Post (Located At Weld Throat), Vmax = 2.96 Kip (= Mreq / b_post) Shear Stress Developed In Plate, fa = 1.0 ksi (= Vmax/ (Plate Thickness* Width)) Allowable Shear Stress Of Plate, Fac = 16.2 ksi (= 0.6 * FyA) Shear Punchout Capacity = 6%

Plate Strength OK! - Shear Punchout Resistance Is Sufficient

Work Prepared For:StruXure Outdoor of WashingtonProject:22-52551 - Shane McArthurCalculations For:Baseplate Anchorage To Concrete Foundation


Anchored Connection Design for 12" x 12" x 0.25" Baseplate With 4 Anchors, Equally Spaced Considering (4) 3/8" Dia, Has Threaded Rods With Hy-200 Epoxy @ 4.5" Embed

Post & Baseplate Connection

Post = Single 8" x 8" x 0.1875" / 0.1875" 6063-T6 Aluminum Tube Baseplate = 12" x 12" x 0.25" Baseplate Connection = Post Mechanically Attached to Baseplate Anchor Layout = 4 - Anchor Baseplate Foundation Strength = 3000 psi Concrete

Anchor Layout & Spacing

Anchor To Plate Edge Distance, a =	1.5 in
Spacing Between Anchors, s =	9.0 in
Tension Anchor Group Centroid , Xc =	10.50 in
Anchor To Concrete Edge Distance =	13.50 in

Anchor Properties

Anchor Considered =	3/8" Dia, Has Threaded Rods With Hy-200 Epoxy @ 4.5" Embed
Anchor Diameter =	0.375 in
Embedment For Maximum Capacity =	4.5 in
Design Tensile Strength Of Anchor =	= 7,790 lb
Design Shear Strength Of Anchor =	= 16,780 lb
Concrete Safety Factor =	4

Anchor Strength Reduction Factors

Edge Distance	Tension	Shear
Edge Distance For Full Capacity =	14.00 in	14.00 in
Minimum Edge Distance Allowed =	1.75 in	1.75 in
Reduction At Min Edge Distance =	22%	5%
Edge Distance Considered =	13.50 in	13.50 in
Edge Distance Reduction Factor =	97%	96%
Anchor Spacing		
Spacing For Full Capacity =	14.00 in	48.00 in
Minimum Spacing Allowed =	1.88 in	1.88 in
Reduction At Min Spacing =	57%	52%
Spacing Considered =	9.00 in	9.00 in
Spacing Reduction Factor =	82%	59%
	Tonolon	Chaor
	Tension	Shear
Adjusted Anchor Design Strength =	3,715 lb	5,738 lb
Total Anchor Group Design Strength =	7,431 lb	22,954 lb

Calculations For:	Baseplate Anchorage To Concrete Foundation
Project:	22-52551 - Shane McArthur
Work Prepared For:	StruXure Outdoor of Washington

Applied Loading & Design Calculations

Per ACI 318-14 Ch 17.2.3.4.3 (d) For Tensile Loading And 17.2.3.5.3(c) For Shear Loading, Using Seismic Overstrength Factor, Ω , As Shown Below

Seismic Loading Overstrength Factor Considered?

Seismic Design Category =DMoment Due to Seismic Shear =4.134 kip-ftMoment Due To Wind Loading =1.531 kip-ftSeismic Design Category D - Overstrength ConsideredSeismic Overstrength Factor, $\Omega =$ 2

Loading On Baseplate & Anchors

Applied Tension, Tmax =	1,316 lbs	
Applied Moment, Mmax =	4134.0 lb-ft	
Applied Tension Due to Moment =	4,725 lbs	= Applied Moment / Tension Anchors Centroid
Applied Shear, Vmax =	537 lbs	
	Tension	Shear
Total Applied Design Loading =	6,041 lbs	537 lbs

Anchor Interaction Capacity

$$\begin{pmatrix} n = & 1.00 \\ \left(\frac{T_{Applied}}{T_{Strength}}\right)^{n} + \left(\frac{V_{Applied}}{V_{Strength}}\right)^{n} = & 84\% \\ \text{Anchor Group Strength OK! - Anchors As Detailed Sufficient For Use}$$